Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o975. doi: 10.1107/S1600536808010969

4-[(1H-Benzotriazol-1-yl)meth­yl]benzo­nitrile

Wen-Xiang Wang a,*, Hong Zhao a
PMCID: PMC2961422  PMID: 21202704

Abstract

In the mol­ecule of the title compound, C14H10N4, which was prepared by reaction of benzotriazole with 4-(bromo­meth­yl)benzonitrile in alkaline solution, the dihedral angle between the benzotriazole and benzene ring systems is 69.03 (6)°.

Related literature

For the application of benzotriazole compounds in industry, see: Pillard et al. (2001); Kopanska et al. (2004); Gruden et al. (2001). For the structure of a related compound, see: Selvanayagam et al. (2002).graphic file with name e-64-0o975-scheme1.jpg

Experimental

Crystal data

  • C14H10N4

  • M r = 234.26

  • Monoclinic, Inline graphic

  • a = 8.1912 (13) Å

  • b = 19.0520 (9) Å

  • c = 8.6610 (6) Å

  • β = 118.0390 (10)°

  • V = 1193.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.50 × 0.40 × 0.40 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.960, T max = 0.969

  • 11866 measured reflections

  • 2715 independent reflections

  • 1903 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.182

  • S = 1.09

  • 2715 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010969/rz2206sup1.cif

e-64-0o975-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010969/rz2206Isup2.hkl

e-64-0o975-Isup2.hkl (133.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Benzotriazole and its derivatives comprise an important class of corrosion inhibitors, typically used as trace additives in industrial chemical mixtures, such as coolants, cutting fluids and hydraulic fluid (Pillard et al., 2001). These derivatives are also used as inhibitors of Acanthamoeba castellanii (Kopanska et al., 2004) and are responsible for toxicity to bacteria (Gruden et al., 2001). In this paper the crystal structure of the title compound is reported.

In the title compound, bond lengths and angles observed in the benzotriazole ring system are comparable with those reported in other benzotriazole compounds (Selvanayagam et al., 2002). The dihedral angle between benzotriazole and benzene rings is 69.03 (6)°. The crystal structure is stabilized only by van der Waals contacts.

Experimental

A mixture of benzotriazole (0.01 mol) and KOH (0.56 g) in methanol (20 ml) was stirred for 10 min. 4-(Bromomethyl)benzonitrile (0.01 mol) was then added and the solution refluxed for 24 h. After completion of the reaction, the reaction mixture was evaporated under vacuum. Yellow crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution after 3 days.

Refinement

All H atoms were calculated geometrically and were refined using the riding-model approximation, with C—H =0.93-0.87 Å and with Uiso(H) = 1.2Ueq (C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C14H10N4 F000 = 488
Mr = 234.26 Dx = 1.304 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2264 reflections
a = 8.1912 (13) Å θ = 3.0–27.4º
b = 19.0520 (9) Å µ = 0.08 mm1
c = 8.6610 (6) Å T = 293 (2) K
β = 118.0390 (10)º Block, yellow
V = 1193.0 (2) Å3 0.50 × 0.40 × 0.40 mm
Z = 4

Data collection

Rigaku Mercury2 diffractometer 2715 independent reflections
Radiation source: fine-focus sealed tube 1903 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5º
T = 293(2) K θmin = 3.0º
CCD Profile fitting scans h = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −24→24
Tmin = 0.960, Tmax = 0.969 l = −11→11
11866 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.182   w = 1/[σ2(Fo2) + (0.0763P)2 + 0.2728P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.002
2715 reflections Δρmax = 0.34 e Å3
163 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7006 (4) 0.10232 (14) 0.9067 (4) 0.0662 (7)
H1A 0.6891 0.1496 0.8769 0.079*
C2 0.8443 (4) 0.07658 (15) 1.0621 (4) 0.0714 (7)
H2B 0.9320 0.1081 1.1380 0.086*
C3 0.8630 (4) 0.00549 (15) 1.1096 (4) 0.0706 (7)
C4 0.7387 (4) −0.04391 (14) 1.0033 (4) 0.0674 (7)
H4A 0.7493 −0.0911 1.0344 0.081*
C5 0.5915 (3) −0.01855 (12) 0.8418 (3) 0.0554 (6)
C6 0.5771 (3) 0.05233 (12) 0.8006 (3) 0.0546 (6)
C7 0.3403 (4) 0.11817 (13) 0.5272 (3) 0.0631 (6)
H7A 0.2790 0.1033 0.4058 0.076*
H7B 0.4372 0.1510 0.5420 0.076*
C8 0.2010 (3) 0.15545 (12) 0.5681 (3) 0.0513 (5)
C9 0.2298 (3) 0.22412 (12) 0.6302 (3) 0.0626 (6)
H9A 0.3379 0.2474 0.6504 0.075*
C10 0.0989 (3) 0.25833 (13) 0.6624 (3) 0.0616 (6)
H10A 0.1182 0.3044 0.7026 0.074*
C11 −0.0614 (3) 0.22289 (11) 0.6339 (3) 0.0515 (5)
C12 −0.0901 (3) 0.15394 (12) 0.5744 (3) 0.0583 (6)
H12A −0.1967 0.1302 0.5566 0.070*
C13 0.0408 (3) 0.12081 (12) 0.5417 (3) 0.0574 (6)
H13A 0.0212 0.0747 0.5015 0.069*
C14 −0.2037 (4) 0.25735 (12) 0.6617 (3) 0.0621 (6)
N1 0.4254 (3) 0.05596 (10) 0.6402 (3) 0.0574 (5)
N2 0.3499 (3) −0.00893 (11) 0.5862 (3) 0.0684 (6)
N3 0.4492 (3) −0.05515 (11) 0.7082 (3) 0.0688 (6)
N4 −0.3207 (3) 0.28251 (13) 0.6795 (4) 0.0841 (8)
H3B 0.9617 −0.0085 1.2151 0.101*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0730 (16) 0.0558 (14) 0.0776 (18) −0.0081 (12) 0.0417 (14) −0.0063 (12)
C2 0.0659 (16) 0.0753 (18) 0.0646 (17) −0.0119 (13) 0.0238 (13) −0.0063 (13)
C3 0.0653 (16) 0.0776 (18) 0.0631 (16) −0.0004 (13) 0.0253 (13) −0.0002 (13)
C4 0.0726 (17) 0.0598 (15) 0.0774 (18) 0.0070 (12) 0.0417 (15) 0.0072 (13)
C5 0.0539 (13) 0.0533 (13) 0.0677 (15) −0.0040 (10) 0.0358 (12) −0.0103 (11)
C6 0.0604 (14) 0.0511 (12) 0.0641 (14) 0.0022 (10) 0.0390 (12) −0.0023 (10)
C7 0.0645 (15) 0.0679 (15) 0.0641 (15) 0.0104 (12) 0.0361 (12) 0.0075 (12)
C8 0.0492 (12) 0.0554 (13) 0.0497 (12) 0.0039 (9) 0.0235 (10) 0.0039 (10)
C9 0.0508 (13) 0.0606 (15) 0.0791 (17) −0.0085 (10) 0.0327 (12) −0.0035 (12)
C10 0.0604 (14) 0.0509 (13) 0.0748 (16) −0.0079 (11) 0.0328 (12) −0.0098 (11)
C11 0.0509 (12) 0.0520 (12) 0.0526 (13) 0.0003 (9) 0.0252 (10) −0.0016 (10)
C12 0.0527 (13) 0.0531 (13) 0.0713 (15) −0.0084 (10) 0.0310 (12) −0.0083 (11)
C13 0.0583 (14) 0.0478 (12) 0.0672 (15) −0.0029 (10) 0.0303 (12) −0.0084 (10)
C14 0.0659 (15) 0.0530 (13) 0.0762 (16) −0.0044 (11) 0.0408 (13) −0.0065 (12)
N1 0.0533 (11) 0.0651 (12) 0.0564 (12) 0.0047 (9) 0.0279 (9) −0.0029 (9)
N2 0.0658 (13) 0.0603 (13) 0.0782 (15) 0.0012 (10) 0.0330 (11) −0.0047 (11)
N3 0.0681 (13) 0.0547 (12) 0.0851 (15) −0.0019 (10) 0.0373 (12) −0.0069 (11)
N4 0.0786 (16) 0.0733 (15) 0.119 (2) −0.0010 (12) 0.0622 (16) −0.0153 (14)

Geometric parameters (Å, °)

C1—C6 1.379 (3) C7—H7B 0.9700
C1—C2 1.396 (4) C8—C13 1.388 (3)
C1—H1A 0.9301 C8—C9 1.392 (3)
C2—C3 1.403 (4) C9—C10 1.391 (3)
C2—H2B 0.9300 C9—H9A 0.9299
C3—C4 1.374 (4) C10—C11 1.391 (3)
C3—H3B 0.9299 C10—H10A 0.9300
C4—C5 1.435 (4) C11—C12 1.390 (3)
C4—H4A 0.9300 C11—C14 1.453 (3)
C5—N3 1.384 (3) C12—C13 1.383 (3)
C5—C6 1.387 (3) C12—H12A 0.9299
C6—N1 1.362 (3) C13—H13A 0.9300
C7—N1 1.486 (3) C14—N4 1.145 (3)
C7—C8 1.521 (3) N1—N2 1.363 (3)
C7—H7A 0.9700 N2—N3 1.321 (3)
C6—C1—C2 114.9 (2) C13—C8—C9 119.1 (2)
C6—C1—H1A 122.5 C13—C8—C7 119.6 (2)
C2—C1—H1A 122.5 C9—C8—C7 121.3 (2)
C1—C2—C3 123.2 (2) C10—C9—C8 120.7 (2)
C1—C2—H2B 118.4 C10—C9—H9A 119.6
C3—C2—H2B 118.4 C8—C9—H9A 119.6
C4—C3—C2 121.4 (2) C11—C10—C9 119.3 (2)
C4—C3—H3B 119.4 C11—C10—H10A 120.4
C2—C3—H3B 119.3 C9—C10—H10A 120.4
C3—C4—C5 116.2 (2) C12—C11—C10 120.4 (2)
C3—C4—H4A 121.9 C12—C11—C14 118.6 (2)
C5—C4—H4A 121.9 C10—C11—C14 121.0 (2)
N3—C5—C6 109.8 (2) C13—C12—C11 119.7 (2)
N3—C5—C4 129.6 (2) C13—C12—H12A 120.2
C6—C5—C4 120.6 (2) C11—C12—H12A 120.2
N1—C6—C1 132.6 (2) C12—C13—C8 120.8 (2)
N1—C6—C5 103.8 (2) C12—C13—H13A 119.6
C1—C6—C5 123.6 (2) C8—C13—H13A 119.6
N1—C7—C8 112.97 (18) N4—C14—C11 177.3 (3)
N1—C7—H7A 109.0 C6—N1—N2 110.69 (19)
C8—C7—H7A 109.0 C6—N1—C7 129.3 (2)
N1—C7—H7B 109.0 N2—N1—C7 120.0 (2)
C8—C7—H7B 109.0 N3—N2—N1 108.7 (2)
H7A—C7—H7B 107.8 N2—N3—C5 107.0 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2206).

References

  1. Gruden, C. L., Dow, S. M. & Hernandez, M. T. (2001). Water Environ. Res.73, 72–79. [DOI] [PubMed]
  2. Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem.12, 2617–2624. [DOI] [PubMed]
  3. Pillard, D. A., Cornell, J. S., Dufresne, D. L. & Hernandez, M. T. (2001). Water Res.35, 557–560. [DOI] [PubMed]
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Selvanayagam, S., Rajakannan, V., Velmurugan, D., Dhanasekaran, M., Rajakumar, P. & Moon, J.-K. (2002). Acta Cryst. E58, o1190–o1192.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010969/rz2206sup1.cif

e-64-0o975-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010969/rz2206Isup2.hkl

e-64-0o975-Isup2.hkl (133.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES