Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 24;64(Pt 6):o1158. doi: 10.1107/S1600536808015286

7-Bromo-2-methyl-1-tosyl­naphtho[2,1-b]furan

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2961428  PMID: 21202666

Abstract

The title compound, C20H15BrO3S, was prepared by the oxidation of 7-bromo-2-methyl-1-(4-tolyl­sulfan­yl)naph­tho[2,1-b]furan with 3-chloro­peroxy­benzoic acid. The 4-tolyl ring makes a dihedral angle of 70.96 (6)° with the plane of the naphthofuran fragment. The crystal structure is stabilized by aromatic π–π stacking inter­actions, with centroid–centroid distances of 3.672 (3) and 3.858 (3) Å between the central benzene and furan rings, and between the brominated benzene and central benzene rings of the naphthofuran system of neighbouring mol­ecules, respectively. In addition, the stacked mol­ecules exhibit C—H⋯π and inter- and intra­molecular C—H⋯O inter­actions.

Related literature

For the crystal structures of similar 2-methyl-1-(phenyl­sulfon­yl)naphtho[2,1-b]furan compounds, see: Choi et al. (2008a ,b ).graphic file with name e-64-o1158-scheme1.jpg

Experimental

Crystal data

  • C20H15BrO3S

  • M r = 415.29

  • Monoclinic, Inline graphic

  • a = 14.026 (2) Å

  • b = 8.225 (1) Å

  • c = 15.185 (2) Å

  • β = 102.826 (2)°

  • V = 1708.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.54 mm−1

  • T = 173 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.480, T max = 0.608

  • 10014 measured reflections

  • 3704 independent reflections

  • 3368 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.082

  • S = 1.09

  • 3704 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −1.04 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015286/at2569sup1.cif

e-64-o1158-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015286/at2569Isup2.hkl

e-64-o1158-Isup2.hkl (181.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 2.57 3.485 (3) 163
C4—H4⋯O2 0.95 2.21 3.035 (2) 145
C15—H15⋯O3ii 0.95 2.42 3.303 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C13–C18 benzene ring.

supplementary crystallographic information

Comment

This work is related to our communications on the synthesis and structures of 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan analogues, viz. 2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Choi et al., 2008a) and 7-bromo-2-methyl-1-(phenylsulfonyl)naphtho[2,1-b]furan (Choi et al., 2008b). Here we report the crystal structure of the title compound, 7-bromo-2-methyl-1-tosylnaphtho[2,1-b]furan (Fig. 1).

The naphthofuran unit is essentially planar, with a mean deviation of 0.01 Å from the least-squares plane defined by the thirteen constituent atoms. The 4-tolyl ring (C13-C18) makes a dihedral angle of 70.96 (6)° with the plane of the naphthofuran fragment. The molecular packing (Fig. 2) is stabilized by two different π—π interactions within each stack of molecule; one between the central benzene ring (Cg3) and the furan ring (Cg4ii) of the adjacent naphthofuran fragments {distance; 3.672 (3) Å}, and a second between the brominated benzene ring (Cg2) and the central benzene ring (Cg3iii) of the adjacent naphthofuran fragments {distance; 3.858 (3) Å} (Fig. 2; Cg2, Cg3 and Cg4 are the centroids of the C3-C8 benzene, the C2/C3/C8/C9/C10/C11 benzene, and the O1/C12/C1/C2/C11 furan rings, respectively, symmetry code as in Fig. 2). The crystal packing is further stabilized by C—H···π interaction between a central benzene H atom of naphthofuran unit and the 4-tolyl ring of the tosyl substituent, with a C10—H10···Cg1i separation of 2.57 Å (Fig. 2 and Table 1; Cg1 is the centroid of the C13-C18 phenyl ring; symmetry code as in Fig. 2). Additionally, inter- and intramolecular C—H···O interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

3-Chloroperoxybenzoic acid (77%, 377 mg, 1.68 mmol) was added in small portions to a stirred solution of 7-bromo-2-methyl-1-(4-tolylsulfanyl)naphtho[2,1-b]furan (306 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 4 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (chloroform) to afford the title compound as a colourless solid [yield 79%, m.p. 480-481 K; Rf = 0.51 (chloroform)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in chloroform at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.35 (s, 3H), 2.99 (s, 3H), 7.27 (s, 2H), 7.59-7.68 (m, 3H), 7.83 (d, J = 8.08 Hz, 2H), 8.03 (s, 1H), 8.91 (s, J = 9.16 Hz, 1H); EI-MS 416 [M+2], 414 [M+].

Refinement

All H atoms were geometrically positioned and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.77 Å from Br and the largest hole is 0.67 Å from Br.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

π···π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) x-1/2, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) x, y+1, z; (v) x, y-1, z; (vi) x+1/2, -y+3/2, z+1/2.]

Crystal data

C20H15BrO3S F000 = 840
Mr = 415.29 Dx = 1.615 Mg m3
Monoclinic, P21/n Melting point = 480–481 K
Hall symbol: -P 2yn Mo Kα radiation λ = 0.71073 Å
a = 14.026 (2) Å Cell parameters from 6484 reflections
b = 8.225 (1) Å θ = 2.2–28.3º
c = 15.185 (2) Å µ = 2.55 mm1
β = 102.826 (2)º T = 173 (2) K
V = 1708.1 (4) Å3 Block, colourless
Z = 4 0.30 × 0.30 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 3704 independent reflections
Radiation source: fine-focus sealed tube 3368 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.024
Detector resolution: 10 pixels mm-1 θmax = 27.0º
T = 173(2) K θmin = 2.8º
φ and ω scans h = −17→14
Absorption correction: multi-scan(SADABS; Sheldrick, 2000) k = −10→9
Tmin = 0.480, Tmax = 0.608 l = −19→19
10014 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.082   w = 1/[σ2(Fo2) + (0.0373P)2 + 1.421P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
3704 reflections Δρmax = 0.61 e Å3
228 parameters Δρmin = −1.04 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.307602 (17) 1.04128 (3) 0.664085 (18) 0.04012 (10)
S 0.79201 (3) 0.59282 (6) 0.62949 (3) 0.01860 (11)
O1 0.64155 (11) 0.52776 (18) 0.38321 (9) 0.0264 (3)
O2 0.74469 (10) 0.61119 (18) 0.70363 (9) 0.0248 (3)
O3 0.85357 (11) 0.45249 (17) 0.62854 (11) 0.0276 (3)
C1 0.70375 (14) 0.5926 (2) 0.52785 (12) 0.0190 (4)
C2 0.60466 (14) 0.6593 (2) 0.50343 (12) 0.0184 (4)
C3 0.53912 (13) 0.7504 (2) 0.54485 (12) 0.0177 (4)
C4 0.56078 (14) 0.8095 (2) 0.63474 (13) 0.0214 (4)
H4 0.6233 0.7883 0.6723 0.026*
C5 0.49378 (15) 0.8966 (3) 0.66890 (14) 0.0245 (4)
H5 0.5102 0.9368 0.7290 0.029*
C6 0.40102 (15) 0.9256 (3) 0.61444 (15) 0.0249 (4)
C7 0.37592 (15) 0.8727 (3) 0.52738 (14) 0.0250 (4)
H7 0.3125 0.8947 0.4917 0.030*
C8 0.44413 (14) 0.7849 (2) 0.48995 (13) 0.0209 (4)
C9 0.41645 (15) 0.7306 (3) 0.39838 (14) 0.0266 (4)
H9 0.3529 0.7550 0.3638 0.032*
C10 0.47904 (16) 0.6451 (3) 0.35995 (13) 0.0264 (4)
H10 0.4611 0.6088 0.2991 0.032*
C11 0.57167 (15) 0.6128 (2) 0.41433 (13) 0.0219 (4)
C12 0.72149 (16) 0.5171 (2) 0.45281 (14) 0.0241 (4)
C13 0.86530 (13) 0.7660 (2) 0.62557 (12) 0.0181 (4)
C14 0.82844 (14) 0.9193 (2) 0.63701 (13) 0.0207 (4)
H14 0.7635 0.9315 0.6449 0.025*
C15 0.88778 (15) 1.0550 (2) 0.63683 (14) 0.0229 (4)
H15 0.8626 1.1602 0.6441 0.027*
C16 0.98325 (16) 1.0390 (2) 0.62625 (15) 0.0249 (4)
C17 1.01851 (17) 0.8839 (3) 0.61549 (19) 0.0361 (5)
H17 1.0837 0.8713 0.6083 0.043*
C18 0.96049 (16) 0.7473 (3) 0.61504 (17) 0.0309 (5)
H18 0.9856 0.6421 0.6076 0.037*
C19 0.80537 (19) 0.4294 (3) 0.43022 (17) 0.0359 (5)
H19A 0.8032 0.3148 0.4473 0.054*
H19B 0.8667 0.4782 0.4633 0.054*
H19C 0.8017 0.4374 0.3652 0.054*
C20 1.04846 (17) 1.1859 (3) 0.62979 (18) 0.0360 (5)
H20A 1.0081 1.2836 0.6153 0.054*
H20B 1.0896 1.1731 0.5858 0.054*
H20C 1.0901 1.1963 0.6906 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.03043 (14) 0.04477 (17) 0.04947 (17) 0.01043 (10) 0.01810 (11) −0.00261 (11)
S 0.0176 (2) 0.0165 (2) 0.0206 (2) 0.00131 (16) 0.00179 (17) 0.00252 (17)
O1 0.0320 (8) 0.0272 (8) 0.0197 (7) 0.0013 (6) 0.0050 (6) −0.0045 (6)
O2 0.0238 (7) 0.0306 (8) 0.0191 (7) −0.0015 (6) 0.0029 (5) 0.0053 (6)
O3 0.0259 (8) 0.0169 (7) 0.0370 (8) 0.0048 (6) 0.0009 (6) 0.0022 (6)
C1 0.0194 (9) 0.0179 (9) 0.0191 (9) 0.0000 (7) 0.0030 (7) −0.0002 (7)
C2 0.0204 (9) 0.0149 (8) 0.0183 (9) −0.0019 (7) 0.0008 (7) 0.0014 (7)
C3 0.0180 (9) 0.0155 (8) 0.0187 (8) −0.0011 (7) 0.0021 (7) 0.0026 (7)
C4 0.0187 (9) 0.0241 (10) 0.0201 (9) −0.0014 (7) 0.0015 (7) −0.0001 (7)
C5 0.0242 (10) 0.0264 (10) 0.0233 (10) −0.0020 (8) 0.0061 (8) −0.0034 (8)
C6 0.0219 (10) 0.0225 (10) 0.0324 (11) 0.0021 (8) 0.0107 (8) 0.0020 (8)
C7 0.0189 (9) 0.0252 (10) 0.0288 (10) 0.0024 (8) 0.0009 (8) 0.0058 (8)
C8 0.0206 (9) 0.0189 (9) 0.0211 (9) −0.0016 (7) 0.0003 (7) 0.0040 (7)
C9 0.0244 (10) 0.0276 (10) 0.0227 (10) −0.0006 (8) −0.0056 (8) 0.0040 (8)
C10 0.0323 (11) 0.0268 (10) 0.0159 (9) −0.0024 (8) −0.0041 (8) −0.0007 (8)
C11 0.0259 (10) 0.0193 (9) 0.0205 (9) −0.0012 (8) 0.0048 (8) −0.0005 (7)
C12 0.0263 (10) 0.0219 (10) 0.0243 (10) −0.0001 (8) 0.0059 (8) 0.0005 (8)
C13 0.0176 (9) 0.0179 (9) 0.0184 (8) 0.0008 (7) 0.0029 (7) −0.0005 (7)
C14 0.0157 (9) 0.0213 (9) 0.0245 (9) 0.0040 (7) 0.0029 (7) 0.0011 (7)
C15 0.0224 (10) 0.0177 (9) 0.0274 (10) 0.0041 (7) 0.0030 (8) 0.0005 (7)
C16 0.0248 (10) 0.0216 (10) 0.0295 (10) −0.0020 (8) 0.0085 (8) −0.0016 (8)
C17 0.0246 (11) 0.0275 (12) 0.0625 (16) 0.0002 (9) 0.0231 (11) −0.0077 (11)
C18 0.0260 (11) 0.0201 (10) 0.0507 (13) 0.0019 (8) 0.0170 (10) −0.0063 (9)
C19 0.0361 (13) 0.0377 (13) 0.0379 (12) 0.0065 (10) 0.0166 (10) −0.0062 (10)
C20 0.0276 (11) 0.0271 (11) 0.0563 (15) −0.0058 (9) 0.0158 (11) −0.0028 (10)

Geometric parameters (Å, °)

Br—C6 1.905 (2) C9—H9 0.9500
S—O2 1.436 (2) C10—C11 1.401 (3)
S—O3 1.443 (2) C10—H10 0.9500
S—C1 1.751 (2) C12—C19 1.483 (3)
S—C13 1.765 (2) C13—C18 1.388 (3)
O1—C12 1.362 (3) C13—C14 1.388 (3)
O1—C11 1.371 (3) C14—C15 1.392 (3)
C1—C12 1.368 (3) C14—H14 0.9500
C1—C2 1.463 (3) C15—C16 1.390 (3)
C2—C11 1.383 (3) C15—H15 0.9500
C2—C3 1.435 (3) C16—C17 1.391 (3)
C3—C4 1.417 (3) C16—C20 1.509 (3)
C3—C8 1.434 (3) C17—C18 1.387 (3)
C4—C5 1.372 (3) C17—H17 0.9500
C4—H4 0.9500 C18—H18 0.9500
C5—C6 1.399 (3) C19—H19A 0.9800
C5—H5 0.9500 C19—H19B 0.9800
C6—C7 1.362 (3) C19—H19C 0.9800
C7—C8 1.415 (3) C20—H20A 0.9800
C7—H7 0.9500 C20—H20B 0.9800
C8—C9 1.430 (3) C20—H20C 0.9800
C9—C10 1.354 (3)
O2—S—O3 118.26 (9) O1—C11—C2 111.6 (2)
O2—S—C1 109.37 (9) O1—C11—C10 122.3 (2)
O3—S—C1 107.33 (9) C2—C11—C10 126.1 (2)
O2—S—C13 108.39 (9) O1—C12—C1 110.3 (2)
O3—S—C13 106.92 (9) O1—C12—C19 114.2 (2)
C1—S—C13 105.90 (9) C1—C12—C19 135.5 (2)
C12—O1—C11 107.1 (2) C18—C13—C14 120.7 (2)
C12—C1—C2 107.3 (2) C18—C13—S 119.8 (2)
C12—C1—S 120.7 (2) C14—C13—S 119.5 (1)
C2—C1—S 132.0 (2) C13—C14—C15 119.2 (2)
C11—C2—C3 117.7 (2) C13—C14—H14 120.4
C11—C2—C1 103.7 (2) C15—C14—H14 120.4
C3—C2—C1 138.6 (2) C16—C15—C14 121.1 (2)
C4—C3—C8 117.7 (2) C16—C15—H15 119.5
C4—C3—C2 125.5 (2) C14—C15—H15 119.5
C8—C3—C2 116.8 (2) C15—C16—C17 118.5 (2)
C5—C4—C3 121.7 (2) C15—C16—C20 120.8 (2)
C5—C4—H4 119.2 C17—C16—C20 120.7 (2)
C3—C4—H4 119.2 C18—C17—C16 121.4 (2)
C4—C5—C6 119.4 (2) C18—C17—H17 119.3
C4—C5—H5 120.3 C16—C17—H17 119.3
C6—C5—H5 120.3 C17—C18—C13 119.2 (2)
C7—C6—C5 121.7 (2) C17—C18—H18 120.4
C7—C6—Br 119.5 (2) C13—C18—H18 120.4
C5—C6—Br 118.9 (2) C12—C19—H19A 109.5
C6—C7—C8 120.1 (2) C12—C19—H19B 109.5
C6—C7—H7 120.0 H19A—C19—H19B 109.5
C8—C7—H7 120.0 C12—C19—H19C 109.5
C7—C8—C9 119.2 (2) H19A—C19—H19C 109.5
C7—C8—C3 119.4 (2) H19B—C19—H19C 109.5
C9—C8—C3 121.4 (2) C16—C20—H20A 109.5
C10—C9—C8 121.3 (2) C16—C20—H20B 109.5
C10—C9—H9 119.4 H20A—C20—H20B 109.5
C8—C9—H9 119.4 C16—C20—H20C 109.5
C9—C10—C11 116.7 (2) H20A—C20—H20C 109.5
C9—C10—H10 121.6 H20B—C20—H20C 109.5
C11—C10—H10 121.6
O2—S—C1—C12 −154.52 (16) C12—O1—C11—C2 0.4 (2)
O3—S—C1—C12 −25.06 (19) C12—O1—C11—C10 −179.39 (19)
C13—S—C1—C12 88.88 (18) C3—C2—C11—O1 179.65 (16)
O2—S—C1—C2 23.9 (2) C1—C2—C11—O1 −0.9 (2)
O3—S—C1—C2 153.39 (18) C3—C2—C11—C10 −0.6 (3)
C13—S—C1—C2 −92.7 (2) C1—C2—C11—C10 178.83 (19)
C12—C1—C2—C11 1.1 (2) C9—C10—C11—O1 −179.86 (19)
S—C1—C2—C11 −177.49 (16) C9—C10—C11—C2 0.4 (3)
C12—C1—C2—C3 −179.6 (2) C11—O1—C12—C1 0.4 (2)
S—C1—C2—C3 1.8 (4) C11—O1—C12—C19 −179.30 (18)
C11—C2—C3—C4 −179.21 (18) C2—C1—C12—O1 −1.0 (2)
C1—C2—C3—C4 1.6 (4) S—C1—C12—O1 177.83 (14)
C11—C2—C3—C8 0.3 (3) C2—C1—C12—C19 178.7 (2)
C1—C2—C3—C8 −178.8 (2) S—C1—C12—C19 −2.5 (4)
C8—C3—C4—C5 0.1 (3) O2—S—C13—C18 133.70 (17)
C2—C3—C4—C5 179.65 (19) O3—S—C13—C18 5.2 (2)
C3—C4—C5—C6 1.2 (3) C1—S—C13—C18 −109.04 (18)
C4—C5—C6—C7 −1.5 (3) O2—S—C13—C14 −43.50 (17)
C4—C5—C6—Br 178.18 (16) O3—S—C13—C14 −172.00 (15)
C5—C6—C7—C8 0.4 (3) C1—S—C13—C14 73.77 (17)
Br—C6—C7—C8 −179.22 (15) C18—C13—C14—C15 0.7 (3)
C6—C7—C8—C9 −179.87 (19) S—C13—C14—C15 177.89 (15)
C6—C7—C8—C3 0.9 (3) C13—C14—C15—C16 −0.6 (3)
C4—C3—C8—C7 −1.1 (3) C14—C15—C16—C17 0.2 (3)
C2—C3—C8—C7 179.28 (17) C14—C15—C16—C20 −177.6 (2)
C4—C3—C8—C9 179.64 (18) C15—C16—C17—C18 0.1 (4)
C2—C3—C8—C9 0.1 (3) C20—C16—C17—C18 177.9 (2)
C7—C8—C9—C10 −179.5 (2) C16—C17—C18—C13 0.0 (4)
C3—C8—C9—C10 −0.2 (3) C14—C13—C18—C17 −0.4 (3)
C8—C9—C10—C11 0.0 (3) S—C13—C18—C17 −177.58 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C10—H10···Cg1i 0.95 2.57 3.485 (3) 163
C4—H4···O2 0.95 2.21 3.035 (2) 145
C15—H15···O3ii 0.95 2.42 3.303 (2) 155

Symmetry codes: (i) x−1/2, −y+3/2, z−1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2569).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o727. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o944. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015286/at2569sup1.cif

e-64-o1158-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015286/at2569Isup2.hkl

e-64-o1158-Isup2.hkl (181.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES