Abstract
In the structure of the title salt, C6H9N2 +·C7H6NO2 −, the 4-aminobenzoate anions are linked to adjacent anions and 2-amino-4-methylpyridinium cations via N—H⋯O hydrogen bonds, forming a three-dimensional supramolecular structure. The crystal structure also shows a weak C—H⋯O hydrogen bond between adjacent anions. Within the 4-aminobenzoate anion, the carboxylate group is twisted by 14.0 (4)° with respect to the benzene ring.
Related literature
For general background, see: Choudhury et al. (2007 ▶); Halvorson et al. (1987 ▶); Geiser et al. (1986 ▶); Geiser & Willett (1984 ▶). For related structures, see: Kaabi & Khedhiri (2004 ▶); Chtioui et al. (2006 ▶). For a description of the Cambridge Structural Database, see Allen (2002 ▶).
Experimental
Crystal data
C6H9N2 +·C7H6NO2 −
M r = 245.28
Orthorhombic,
a = 5.5734 (14) Å
b = 8.8154 (16) Å
c = 25.374 (5) Å
V = 1246.6 (5) Å3
Z = 4
Mo Kα radiation
μ = 0.09 mm−1
T = 295 (2) K
0.46 × 0.38 × 0.30 mm
Data collection
Rigaku R-AXIS RAPID IP diffractometer
Absorption correction: none
14099 measured reflections
1451 independent reflections
1126 reflections with I > 2σ(I)
R int = 0.059
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.095
S = 1.04
1451 reflections
165 parameters
H-atom parameters constrained
Δρmax = 0.13 e Å−3
Δρmin = −0.12 e Å−3
Data collection: PROCESS-AUTO (Rigaku, 1998 ▶); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 ▶); program(s) used to solve structure: SIR92 (Altomare et al., 1993 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014839/ng2457sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014839/ng2457Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯O2i | 0.89 | 2.19 | 3.021 (3) | 157 |
| N2—H2N⋯O2 | 0.92 | 1.69 | 2.606 (3) | 174 |
| N3—H3A⋯O1ii | 0.93 | 1.95 | 2.844 (3) | 160 |
| N3—H3B⋯O1 | 0.92 | 1.95 | 2.872 (3) | 174 |
| C3—H3⋯O2i | 0.93 | 2.52 | 3.301 (3) | 142 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The work was supported by the ZIJIN project of Zhejiang University, China.
supplementary crystallographic information
Comment
The presence of the outside lone-pair electrons on the pyridine-N atom suggests that 2-amino-4-methyl-pyridine is an appropriate ligand for preparing metal complexes. However a search of the Cambridge Structure Database (November 2007 update; Allen, 2002) shows that in the most cases the 2-amino-4-methyl-pyridine presents as a counter cation but does not coordinate to the metal ion (Choudhury et al., 2007; Halvorson et al., 1987; Geiser et al., 1986; Geiser & Willett, 1984). This implies that the 2-amino-4-methyl-pyridine, as a weak base, is easy to be protonated in acid condition. The crystal structures of two inorganic salt of 2-amino-4-methyl-pyridine, 2-amino-4-methyl-pyridinium phosphate (Kaabi & Khedhiri, 2004) and 2-amino-4-methyl-pyridinium arsenate (Chtioui et al., 2006), have been reported previously. Recently we prepared the title organic salt of 2-amino-4-methyl-pyridine, and its crystal structure is reported here.
The crystal of the title compound consists of 2-amino-4-methyl-pyridinium cations and amino-benzoate anions (Fig. 1). The smaller difference in C—O bond distances of the carboxyl group (Table 1) indicates the carboxyl group is deprotonated in the crystal. Within the anion the carboxyl group is twisted with respect to the benzene ring by a dihedral angle of 14.0 (4)°. In the crystal, the aminobenzoate anions are linked with both of adjacent aminobenzoate anions and aminomethylpyridinium cations via N—H···O hydrogen bonding, to form the three dimensional supramolecular structure. The crystal structure also contains weak C—H···O hydrogen bonding between adjacent anions.
Experimental
2-Amino-4-methyl-pyridine (0.054 g, 0.5 mmol) and 4-amino-benzoic acid (0.069 g, 0.5 mmol) were dissolved in ethanol (5 ml) at room temperature. The solution was filtered and light brown single crystals were obtained from the filtration after 2 weeks.
Refinement
H atoms bonded to N atoms were located in a difference Fourier map and were refined as riding in as-found relative positions, with Uiso(H) = 1.5Ueq(N). Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and the torsion angle was refined to fit the electron density, Uiso(H) = 1.5Ueq(C). Aromatic H atoms were placed in calculated positions with C—H = 0.93 Å, and refined in riding mode with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering effects, Friedel pairs were merged.
Figures
Fig. 1.
The molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms). Dashed lines indicate hydrogen bonding.
Crystal data
| C6H9N2+·C7H6NO2– | F000 = 520 |
| Mr = 245.28 | Dx = 1.307 Mg m−3 |
| Orthorhombic, P212121 | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 2654 reflections |
| a = 5.5734 (14) Å | θ = 2.0–25.2º |
| b = 8.8154 (16) Å | µ = 0.09 mm−1 |
| c = 25.374 (5) Å | T = 295 (2) K |
| V = 1246.6 (5) Å3 | Chunk, light brown |
| Z = 4 | 0.46 × 0.38 × 0.30 mm |
Data collection
| Rigaku R-AXIS RAPID IP diffractometer | 1451 independent reflections |
| Radiation source: fine-focus sealed tube | 1126 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.059 |
| Detector resolution: 10.00 pixels mm-1 | θmax = 26.0º |
| T = 295(2) K | θmin = 1.6º |
| ω scans | h = −6→6 |
| Absorption correction: none | k = −10→10 |
| 14099 measured reflections | l = −30→29 |
Refinement
| Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1505P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.095 | (Δ/σ)max = 0.001 |
| S = 1.04 | Δρmax = 0.13 e Å−3 |
| 1451 reflections | Δρmin = −0.12 e Å−3 |
| 165 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.015 (3) |
| Secondary atom site location: difference Fourier map |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | −0.5107 (5) | 0.2323 (3) | 0.74214 (9) | 0.0710 (7) | |
| H1A | −0.4459 | 0.1947 | 0.7712 | 0.106* | |
| H1B | −0.6362 | 0.1981 | 0.7267 | 0.106* | |
| N2 | 0.5736 (4) | 0.8834 (2) | 0.61196 (7) | 0.0520 (6) | |
| H2N | 0.4548 | 0.8231 | 0.6256 | 0.078* | |
| N3 | 0.4308 (5) | 0.8308 (3) | 0.52906 (8) | 0.0660 (7) | |
| H3A | 0.4443 | 0.8528 | 0.4934 | 0.099* | |
| H3B | 0.3098 | 0.7766 | 0.5454 | 0.099* | |
| O1 | 0.0737 (4) | 0.6432 (2) | 0.57815 (6) | 0.0692 (6) | |
| O2 | 0.2584 (3) | 0.6999 (2) | 0.65310 (6) | 0.0562 (5) | |
| C1 | −0.0644 (4) | 0.5269 (3) | 0.65687 (9) | 0.0451 (6) | |
| C2 | −0.0117 (4) | 0.4843 (3) | 0.70832 (9) | 0.0497 (6) | |
| H2 | 0.1249 | 0.5233 | 0.7244 | 0.060* | |
| C3 | −0.1565 (5) | 0.3857 (3) | 0.73617 (9) | 0.0523 (7) | |
| H3 | −0.1139 | 0.3568 | 0.7702 | 0.063* | |
| C4 | −0.3654 (5) | 0.3295 (3) | 0.71361 (9) | 0.0488 (6) | |
| C5 | −0.4210 (5) | 0.3741 (3) | 0.66250 (10) | 0.0581 (7) | |
| H5 | −0.5612 | 0.3388 | 0.6468 | 0.070* | |
| C6 | −0.2727 (5) | 0.4694 (3) | 0.63474 (10) | 0.0550 (7) | |
| H6 | −0.3129 | 0.4960 | 0.6004 | 0.066* | |
| C7 | 0.0980 (5) | 0.6303 (3) | 0.62688 (9) | 0.0479 (6) | |
| C8 | 0.5886 (5) | 0.9037 (3) | 0.55940 (9) | 0.0482 (6) | |
| C9 | 0.7670 (5) | 1.0014 (3) | 0.53990 (10) | 0.0520 (6) | |
| H9 | 0.7815 | 1.0156 | 0.5037 | 0.062* | |
| C10 | 0.9189 (5) | 1.0757 (3) | 0.57306 (10) | 0.0551 (7) | |
| C11 | 0.8960 (6) | 1.0501 (3) | 0.62760 (11) | 0.0668 (8) | |
| H11 | 0.9977 | 1.0989 | 0.6512 | 0.080* | |
| C12 | 0.7262 (6) | 0.9547 (3) | 0.64526 (10) | 0.0636 (8) | |
| H12 | 0.7131 | 0.9372 | 0.6813 | 0.076* | |
| C13 | 1.1031 (6) | 1.1849 (3) | 0.55251 (12) | 0.0742 (8) | |
| H13A | 1.1123 | 1.1766 | 0.5148 | 0.111* | |
| H13B | 1.2567 | 1.1615 | 0.5676 | 0.111* | |
| H13C | 1.0582 | 1.2865 | 0.5619 | 0.111* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0621 (14) | 0.0843 (17) | 0.0664 (14) | −0.0162 (14) | −0.0039 (12) | 0.0169 (13) |
| N2 | 0.0637 (14) | 0.0562 (12) | 0.0360 (11) | 0.0004 (12) | 0.0035 (11) | 0.0007 (9) |
| N3 | 0.0751 (15) | 0.0825 (16) | 0.0403 (11) | −0.0200 (16) | 0.0037 (12) | −0.0003 (11) |
| O1 | 0.0800 (14) | 0.0940 (14) | 0.0336 (9) | −0.0151 (13) | −0.0001 (10) | 0.0088 (9) |
| O2 | 0.0660 (11) | 0.0651 (10) | 0.0374 (9) | −0.0093 (11) | 0.0020 (10) | 0.0024 (8) |
| C1 | 0.0495 (14) | 0.0509 (13) | 0.0350 (12) | 0.0068 (13) | 0.0035 (12) | 0.0009 (10) |
| C2 | 0.0508 (14) | 0.0590 (14) | 0.0391 (13) | −0.0028 (13) | −0.0028 (11) | 0.0011 (12) |
| C3 | 0.0537 (16) | 0.0673 (16) | 0.0360 (12) | −0.0002 (14) | −0.0013 (11) | 0.0086 (13) |
| C4 | 0.0489 (15) | 0.0536 (14) | 0.0440 (14) | 0.0021 (13) | 0.0023 (12) | 0.0017 (12) |
| C5 | 0.0525 (15) | 0.0734 (18) | 0.0484 (15) | −0.0043 (16) | −0.0046 (14) | −0.0018 (13) |
| C6 | 0.0599 (17) | 0.0668 (17) | 0.0383 (14) | 0.0070 (16) | −0.0040 (13) | 0.0035 (12) |
| C7 | 0.0559 (16) | 0.0525 (14) | 0.0354 (13) | 0.0065 (14) | 0.0036 (12) | 0.0021 (11) |
| C8 | 0.0554 (15) | 0.0498 (13) | 0.0395 (13) | 0.0042 (14) | 0.0032 (12) | 0.0006 (11) |
| C9 | 0.0635 (16) | 0.0517 (13) | 0.0409 (13) | 0.0048 (15) | 0.0058 (13) | 0.0019 (11) |
| C10 | 0.0574 (16) | 0.0479 (14) | 0.0598 (16) | 0.0027 (14) | 0.0011 (15) | 0.0004 (12) |
| C11 | 0.076 (2) | 0.0692 (18) | 0.0554 (17) | −0.0099 (18) | −0.0100 (16) | −0.0047 (14) |
| C12 | 0.082 (2) | 0.0698 (18) | 0.0387 (14) | 0.0010 (19) | −0.0040 (15) | −0.0012 (13) |
| C13 | 0.0708 (19) | 0.0678 (18) | 0.084 (2) | −0.0106 (19) | 0.0038 (18) | −0.0001 (16) |
Geometric parameters (Å, °)
| N1—C4 | 1.384 (3) | C3—H3 | 0.9300 |
| N1—H1A | 0.8846 | C4—C5 | 1.390 (3) |
| N1—H1B | 0.8568 | C5—C6 | 1.373 (4) |
| N2—C8 | 1.348 (3) | C5—H5 | 0.9300 |
| N2—C12 | 1.354 (3) | C6—H6 | 0.9300 |
| N2—H2N | 0.9167 | C8—C9 | 1.405 (4) |
| N3—C8 | 1.334 (3) | C9—C10 | 1.361 (4) |
| N3—H3A | 0.9287 | C9—H9 | 0.9300 |
| N3—H3B | 0.9252 | C10—C11 | 1.408 (4) |
| O1—C7 | 1.249 (3) | C10—C13 | 1.501 (4) |
| O2—C7 | 1.272 (3) | C11—C12 | 1.343 (4) |
| C1—C6 | 1.385 (4) | C11—H11 | 0.9300 |
| C1—C2 | 1.390 (3) | C12—H12 | 0.9300 |
| C1—C7 | 1.494 (3) | C13—H13A | 0.9600 |
| C2—C3 | 1.381 (3) | C13—H13B | 0.9600 |
| C2—H2 | 0.9300 | C13—H13C | 0.9600 |
| C3—C4 | 1.389 (3) | ||
| C4—N1—H1A | 115.4 | C1—C6—H6 | 119.3 |
| C4—N1—H1B | 117.1 | O1—C7—O2 | 123.4 (2) |
| H1A—N1—H1B | 125.7 | O1—C7—C1 | 119.6 (2) |
| C8—N2—C12 | 121.1 (2) | O2—C7—C1 | 117.0 (2) |
| C8—N2—H2N | 119.7 | N3—C8—N2 | 117.8 (2) |
| C12—N2—H2N | 119.2 | N3—C8—C9 | 124.0 (2) |
| C8—N3—H3A | 114.1 | N2—C8—C9 | 118.3 (2) |
| C8—N3—H3B | 118.1 | C10—C9—C8 | 121.1 (2) |
| H3A—N3—H3B | 127.2 | C10—C9—H9 | 119.4 |
| C6—C1—C2 | 117.3 (2) | C8—C9—H9 | 119.4 |
| C6—C1—C7 | 121.7 (2) | C9—C10—C11 | 118.3 (3) |
| C2—C1—C7 | 121.0 (2) | C9—C10—C13 | 121.3 (2) |
| C3—C2—C1 | 121.8 (2) | C11—C10—C13 | 120.4 (3) |
| C3—C2—H2 | 119.1 | C12—C11—C10 | 119.5 (3) |
| C1—C2—H2 | 119.1 | C12—C11—H11 | 120.3 |
| C2—C3—C4 | 120.2 (2) | C10—C11—H11 | 120.3 |
| C2—C3—H3 | 119.9 | C11—C12—N2 | 121.7 (2) |
| C4—C3—H3 | 119.9 | C11—C12—H12 | 119.1 |
| N1—C4—C3 | 119.7 (2) | N2—C12—H12 | 119.1 |
| N1—C4—C5 | 122.2 (2) | C10—C13—H13A | 109.5 |
| C3—C4—C5 | 118.1 (2) | C10—C13—H13B | 109.5 |
| C6—C5—C4 | 121.1 (3) | H13A—C13—H13B | 109.5 |
| C6—C5—H5 | 119.4 | C10—C13—H13C | 109.5 |
| C4—C5—H5 | 119.4 | H13A—C13—H13C | 109.5 |
| C5—C6—C1 | 121.4 (2) | H13B—C13—H13C | 109.5 |
| C5—C6—H6 | 119.3 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···O2i | 0.89 | 2.19 | 3.021 (3) | 157 |
| N2—H2N···O2 | 0.92 | 1.69 | 2.606 (3) | 174 |
| N3—H3A···O1ii | 0.93 | 1.95 | 2.844 (3) | 160 |
| N3—H3B···O1 | 0.92 | 1.95 | 2.872 (3) | 174 |
| C3—H3···O2i | 0.93 | 2.52 | 3.301 (3) | 142 |
Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x+1/2, −y+3/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2457).
References
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
- Choudhury, S. R., Jana, A. D., Colacio, E., Lee, H. M., Mostafa, G. & Mukhopadhyay, S. (2007). Cryst. Growth Des.7, 212–214.
- Chtioui, A., Benhamada, L. & Jouini, A. (2006). Mater. Res. Bull.40, 2243–2255.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Geiser, U., Gaura, R. M., Willett, R. D. & West, D. X. (1986). Inorg. Chem.25, 4203–4212.
- Geiser, U. & Willett, R. D. (1984). J. Appl. Phys.55, 2407–2409.
- Halvorson, K. E., Grigereit, T. & Willett, R. D. (1987). Inorg. Chem.26, 1716–1720.
- Kaabi, K. & Khedhiri, L. (2004). Z. Kristallogr. New Cryst. Struct.219, 255–256.
- Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014839/ng2457sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014839/ng2457Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

