Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1049. doi: 10.1107/S1600536808012324

5,7-Bis(1-benzothio­phen-2-yl)-2,3-dihydro­thieno[3,4-b][1,4]dioxine

P Sugumar a, S Ranjith a, J Arul Clement b, A K Mohanakrishnan b, M N Ponnuswamy a,*
PMCID: PMC2961437  PMID: 21202568

Abstract

In the title compound, C22H14O2S3, the dioxane ring is disordered over two sites [site occupancies = 0.623 (3) and 0.377 (3)]; both components adopt half-chair conformations. The two benzothio­phene ring systems are asymmetrically twisted away from the attached thio­phene ring [dihedral angles = 20.57 (3) and 6.70 (3)°] and are oriented at an angle of 26.83 (3)°. No significant hydrogen bonding or π–π inter­actions are observed in the crystal structure.

Related literature

For related literature, see: Cohen et al. (1977); Csaszar & Morvay (1983); Dzhurayev et al. (1992); EI-Maghraby et al. (1984); Gewald et al. (1996); Lakshmi et al. (1985); Pellis & West (1968). For the synthesis, see: Amaladass et al. (2007).graphic file with name e-64-o1049-scheme1.jpg

Experimental

Crystal data

  • C22H14O2S3

  • M r = 406.51

  • Monoclinic, Inline graphic

  • a = 16.1602 (5) Å

  • b = 8.3524 (3) Å

  • c = 14.1814 (4) Å

  • β = 107.428 (2)°

  • V = 1826.28 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 293 (2) K

  • 0.15 × 0.13 × 0.10 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: none

  • 26571 measured reflections

  • 7059 independent reflections

  • 4551 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.142

  • S = 0.99

  • 7059 reflections

  • 251 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012324/ci2577sup1.cif

e-64-o1049-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012324/ci2577Isup2.hkl

e-64-o1049-Isup2.hkl (338.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

PS and SR thank Mr P. Charles for his help in solving the structure.

supplementary crystallographic information

Comment

Sulfur containing Schiff bases (Pellis & West, 1968; Cohen et al., 1977; Csaszar & Morvay,1983; Lakshmi et al., 1985) and their thiophen derivatives (EI-Maghraby et al., 1984; Dzhurayev et al., 1992) possess pharmacological activities such as anti-bacterial, anti-cancer, anti-inflammatory and anti-toxic properties (Gewald et al., 1996). Benzo[b]thiophene analogs have been shown to possess interesting estrogenic and antiestrogenic effects. We report here the crystal structure of the title compound.

The C1—C8/S3 and C15—C22/S2 benzothiophene ring systems are essentially planar and are oriented at angles of 20.57 (3)° and 6.70 (3)°, respectively, with respect to the thiophene ring. The dihedral angle between the two benzothiophene ring systems is 26.83 (3)°. Both the major and minor conformers of the disordered dioxane ring adopt half-chair conformations. The crystal packing is stabilized by van der Waals forces.

Experimental

The title compound was prepared according to the procedure reported by Amaladass et al. (2007). Single crystals suitable for X-ray analysis were obtained by slow evaporation method.

Refinement

The methylene C atoms of the dioxane ring are disordered over two positions (C11A/C11B and C12A/C12B) with refined occupancies of 0.623 (3) and 0.377 (3). The corresponding bond distances involving the disordered atoms were restrained to be equal, and also the same Uij parameters were used for atoms C11A and C11B, and C12A and C12B. H atoms were positioned geometrically (C—H = 0.93 Å or 0.97 Å) and were treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

Crystal data

C22H14O2S3 F000 = 840
Mr = 406.51 Dx = 1.478 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4583 reflections
a = 16.1602 (5) Å θ = 2.8–33.8º
b = 8.3524 (3) Å µ = 0.42 mm1
c = 14.1814 (4) Å T = 293 (2) K
β = 107.428 (2)º Block, light green
V = 1826.28 (10) Å3 0.15 × 0.13 × 0.10 mm
Z = 4

Data collection

Bruker Kappa APEXII area-detector diffractometer 4551 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.028
Monochromator: graphite θmax = 33.4º
T = 293(2) K θmin = 2.8º
ω and φ scans h = −24→24
Absorption correction: none k = −12→10
26571 measured reflections l = −21→19
7059 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.143   w = 1/[σ2(Fo2) + (0.0749P)2 + 0.444P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max < 0.001
7059 reflections Δρmax = 0.61 e Å3
251 parameters Δρmin = −0.43 e Å3
3 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 −0.28863 (11) 0.4031 (2) −0.01894 (14) 0.0499 (4)
H1 −0.2949 0.3569 −0.0804 0.060*
C2 −0.35994 (12) 0.4572 (3) 0.00498 (16) 0.0578 (5)
H2 −0.4145 0.4490 −0.0412 0.069*
C3 −0.35223 (12) 0.5241 (2) 0.09694 (18) 0.0597 (5)
H3 −0.4017 0.5590 0.1115 0.072*
C4 −0.27258 (12) 0.5395 (2) 0.16681 (16) 0.0533 (4)
H4 −0.2674 0.5837 0.2285 0.064*
C5 −0.19971 (10) 0.48665 (19) 0.14227 (13) 0.0419 (3)
C6 −0.20599 (10) 0.41809 (19) 0.05007 (12) 0.0400 (3)
C7 −0.12301 (10) 0.3765 (2) 0.03966 (13) 0.0430 (3)
H7 −0.1153 0.3287 −0.0164 0.052*
C8 −0.05619 (10) 0.41564 (19) 0.12239 (11) 0.0374 (3)
C9 0.03586 (9) 0.39615 (18) 0.13747 (11) 0.0364 (3)
C10 0.07580 (9) 0.29651 (18) 0.08760 (11) 0.0357 (3)
C11A 0.08383 (17) 0.1322 (5) −0.0432 (2) 0.0502 (8) 0.623 (3)
H11A 0.0937 0.2125 −0.0881 0.060* 0.623 (3)
H11B 0.0543 0.0420 −0.0820 0.060* 0.623 (3)
C12A 0.16828 (17) 0.0790 (3) 0.0260 (2) 0.0485 (6) 0.623 (3)
H12A 0.1574 −0.0005 0.0707 0.058* 0.623 (3)
H12B 0.2022 0.0283 −0.0117 0.058* 0.623 (3)
C11B 0.0915 (3) 0.0850 (5) −0.0061 (4) 0.0502 (8) 0.377 (3)
H11C 0.0623 0.0295 −0.0670 0.060* 0.377 (3)
H11D 0.1046 0.0059 0.0464 0.060* 0.377 (3)
C12B 0.1754 (3) 0.1472 (7) −0.0147 (2) 0.0485 (6) 0.377 (3)
H12C 0.2092 0.0622 −0.0318 0.058* 0.377 (3)
H12D 0.1658 0.2309 −0.0643 0.058* 0.377 (3)
C13 0.16712 (9) 0.30254 (18) 0.12251 (11) 0.0365 (3)
C14 0.19858 (9) 0.40987 (19) 0.19816 (11) 0.0362 (3)
C15 0.28812 (9) 0.44752 (19) 0.24924 (11) 0.0352 (3)
C16 0.36041 (10) 0.3755 (2) 0.23942 (12) 0.0416 (3)
H16 0.3587 0.2893 0.1973 0.050*
C17 0.43920 (10) 0.44442 (19) 0.29966 (11) 0.0380 (3)
C18 0.52506 (11) 0.4008 (2) 0.30912 (15) 0.0512 (4)
H18 0.5366 0.3159 0.2725 0.061*
C19 0.59199 (11) 0.4840 (2) 0.37253 (15) 0.0521 (4)
H19 0.6489 0.4558 0.3781 0.062*
C20 0.57576 (11) 0.6105 (2) 0.42876 (14) 0.0483 (4)
H20 0.6220 0.6645 0.4722 0.058*
C21 0.49236 (11) 0.6563 (2) 0.42076 (13) 0.0469 (4)
H21 0.4816 0.7414 0.4578 0.056*
C22 0.42398 (9) 0.57260 (19) 0.35592 (11) 0.0374 (3)
O1 0.03162 (7) 0.19777 (15) 0.01304 (9) 0.0476 (3)
O2 0.21883 (7) 0.21067 (15) 0.08407 (9) 0.0467 (3)
S1 0.11311 (2) 0.50367 (5) 0.22588 (3) 0.04068 (11)
S2 0.31369 (3) 0.60648 (5) 0.33305 (3) 0.04677 (12)
S3 −0.09260 (3) 0.49989 (6) 0.21576 (3) 0.04834 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0415 (8) 0.0560 (10) 0.0467 (9) −0.0071 (7) 0.0047 (7) 0.0089 (8)
C2 0.0338 (8) 0.0654 (12) 0.0667 (12) −0.0030 (8) 0.0037 (8) 0.0162 (10)
C3 0.0355 (8) 0.0585 (11) 0.0856 (15) 0.0057 (8) 0.0188 (9) 0.0054 (10)
C4 0.0418 (9) 0.0515 (10) 0.0684 (12) 0.0037 (7) 0.0192 (8) −0.0063 (9)
C5 0.0336 (7) 0.0393 (8) 0.0529 (9) −0.0002 (6) 0.0131 (6) 0.0001 (7)
C6 0.0355 (7) 0.0390 (8) 0.0445 (8) −0.0019 (6) 0.0103 (6) 0.0061 (6)
C7 0.0352 (7) 0.0473 (9) 0.0470 (8) 0.0003 (6) 0.0132 (6) 0.0079 (7)
C8 0.0331 (7) 0.0393 (8) 0.0401 (7) 0.0004 (5) 0.0114 (5) 0.0008 (6)
C9 0.0316 (6) 0.0395 (8) 0.0378 (7) −0.0003 (5) 0.0098 (5) 0.0003 (6)
C10 0.0332 (6) 0.0376 (7) 0.0353 (7) −0.0025 (5) 0.0086 (5) −0.0015 (6)
C11A 0.0450 (11) 0.070 (2) 0.0369 (17) −0.0104 (12) 0.0148 (13) −0.0198 (14)
C12A 0.0432 (11) 0.0540 (18) 0.0478 (15) 0.0009 (11) 0.0128 (11) −0.0150 (11)
C11B 0.0450 (11) 0.070 (2) 0.0369 (17) −0.0104 (12) 0.0148 (13) −0.0198 (14)
C12B 0.0432 (11) 0.0540 (18) 0.0478 (15) 0.0009 (11) 0.0128 (11) −0.0150 (11)
C13 0.0340 (7) 0.0378 (8) 0.0383 (7) 0.0019 (5) 0.0116 (5) −0.0024 (6)
C14 0.0317 (6) 0.0395 (8) 0.0368 (7) −0.0001 (5) 0.0095 (5) −0.0018 (6)
C15 0.0338 (7) 0.0372 (7) 0.0349 (7) −0.0016 (5) 0.0106 (5) −0.0026 (6)
C16 0.0363 (7) 0.0423 (8) 0.0461 (8) −0.0022 (6) 0.0122 (6) −0.0089 (7)
C17 0.0338 (7) 0.0402 (8) 0.0411 (7) −0.0023 (6) 0.0130 (6) −0.0008 (6)
C18 0.0364 (8) 0.0547 (10) 0.0645 (11) 0.0013 (7) 0.0181 (7) −0.0109 (8)
C19 0.0328 (8) 0.0577 (11) 0.0659 (11) −0.0027 (7) 0.0153 (7) −0.0001 (9)
C20 0.0360 (8) 0.0509 (10) 0.0535 (9) −0.0103 (7) 0.0066 (7) 0.0011 (8)
C21 0.0402 (8) 0.0486 (9) 0.0495 (9) −0.0081 (7) 0.0096 (7) −0.0090 (7)
C22 0.0324 (7) 0.0401 (8) 0.0394 (7) −0.0029 (6) 0.0103 (5) −0.0005 (6)
O1 0.0379 (6) 0.0534 (7) 0.0495 (6) −0.0055 (5) 0.0100 (5) −0.0169 (5)
O2 0.0355 (5) 0.0520 (7) 0.0520 (6) 0.0028 (5) 0.0121 (5) −0.0160 (5)
S1 0.03413 (18) 0.0475 (2) 0.0409 (2) −0.00031 (15) 0.01199 (14) −0.00916 (16)
S2 0.03469 (19) 0.0501 (2) 0.0539 (2) −0.00041 (16) 0.01081 (16) −0.01687 (18)
S3 0.0361 (2) 0.0621 (3) 0.0464 (2) 0.00043 (17) 0.01175 (16) −0.01084 (19)

Geometric parameters (Å, °)

C1—C2 1.372 (3) C11B—O1 1.434 (2)
C1—C6 1.405 (2) C11B—C12B 1.490 (3)
C1—H1 0.93 C11B—H11C 0.97
C2—C3 1.390 (3) C11B—H11D 0.97
C2—H2 0.93 C12B—O2 1.465 (3)
C3—C4 1.375 (3) C12B—H12C 0.97
C3—H3 0.93 C12B—H12D 0.97
C4—C5 1.396 (2) C13—O2 1.3627 (18)
C4—H4 0.93 C13—C14 1.373 (2)
C5—C6 1.403 (2) C14—C15 1.445 (2)
C5—S3 1.7361 (17) C14—S1 1.7325 (15)
C6—C7 1.435 (2) C15—C16 1.358 (2)
C7—C8 1.375 (2) C15—S2 1.7470 (15)
C7—H7 0.93 C16—C17 1.425 (2)
C8—C9 1.447 (2) C16—H16 0.93
C8—S3 1.7496 (16) C17—C22 1.400 (2)
C9—C10 1.372 (2) C17—C18 1.401 (2)
C9—S1 1.7318 (15) C18—C19 1.371 (3)
C10—O1 1.3622 (18) C18—H18 0.93
C10—C13 1.410 (2) C19—C20 1.395 (3)
C11A—O1 1.433 (2) C19—H19 0.93
C11A—C12A 1.490 (3) C20—C21 1.373 (2)
C11A—H11A 0.97 C20—H20 0.93
C11A—H11B 0.97 C21—C22 1.395 (2)
C12A—O2 1.467 (2) C21—H21 0.93
C12A—H12A 0.97 C22—S2 1.7365 (15)
C12A—H12B 0.97
C2—C1—C6 119.47 (18) C12B—C11B—H11D 107.8
C2—C1—H1 120.3 H11C—C11B—H11D 107.2
C6—C1—H1 120.3 O2—C12B—C11B 103.6 (3)
C1—C2—C3 121.26 (17) O2—C12B—H12C 111.0
C1—C2—H2 119.4 C11B—C12B—H12C 111.0
C3—C2—H2 119.4 O2—C12B—H12D 111.0
C4—C3—C2 121.00 (18) C11B—C12B—H12D 111.0
C4—C3—H3 119.5 H12C—C12B—H12D 109.0
C2—C3—H3 119.5 O2—C13—C14 123.51 (13)
C3—C4—C5 117.93 (19) O2—C13—C10 122.83 (13)
C3—C4—H4 121.0 C14—C13—C10 113.66 (13)
C5—C4—H4 121.0 C13—C14—C15 127.90 (14)
C4—C5—C6 122.04 (16) C13—C14—S1 109.79 (11)
C4—C5—S3 126.46 (15) C15—C14—S1 122.30 (12)
C6—C5—S3 111.48 (12) C16—C15—C14 127.96 (14)
C5—C6—C1 118.29 (16) C16—C15—S2 111.78 (11)
C5—C6—C7 112.69 (14) C14—C15—S2 120.24 (11)
C1—C6—C7 129.00 (17) C15—C16—C17 113.66 (14)
C8—C7—C6 111.96 (15) C15—C16—H16 123.2
C8—C7—H7 124.0 C17—C16—H16 123.2
C6—C7—H7 124.0 C22—C17—C18 118.81 (15)
C7—C8—C9 127.53 (14) C22—C17—C16 111.87 (13)
C7—C8—S3 112.65 (12) C18—C17—C16 129.32 (16)
C9—C8—S3 119.82 (11) C19—C18—C17 119.69 (17)
C10—C9—C8 127.84 (14) C19—C18—H18 120.2
C10—C9—S1 109.84 (11) C17—C18—H18 120.2
C8—C9—S1 122.33 (12) C18—C19—C20 120.82 (16)
O1—C10—C9 123.31 (13) C18—C19—H19 119.6
O1—C10—C13 122.97 (13) C20—C19—H19 119.6
C9—C10—C13 113.69 (13) C21—C20—C19 120.79 (16)
O1—C11A—C12A 108.9 (2) C21—C20—H20 119.6
O1—C11A—H11A 109.9 C19—C20—H20 119.6
C12A—C11A—H11A 109.9 C20—C21—C22 118.62 (17)
O1—C11A—H11B 109.9 C20—C21—H21 120.7
C12A—C11A—H11B 109.9 C22—C21—H21 120.7
H11A—C11A—H11B 108.3 C21—C22—C17 121.27 (15)
O2—C12A—C11A 113.1 (2) C21—C22—S2 127.40 (13)
O2—C12A—H12A 109.0 C17—C22—S2 111.34 (11)
C11A—C12A—H12A 109.0 C10—O1—C11A 113.88 (16)
O2—C12A—H12B 109.0 C10—O1—C11B 108.6 (3)
C11A—C12A—H12B 109.0 C13—O2—C12B 114.2 (2)
H12A—C12A—H12B 107.8 C13—O2—C12A 109.99 (15)
O1—C11B—C12B 117.9 (4) C9—S1—C14 92.98 (7)
O1—C11B—H11C 107.8 C22—S2—C15 91.35 (7)
C12B—C11B—H11C 107.8 C5—S3—C8 91.20 (8)
O1—C11B—H11D 107.8
C6—C1—C2—C3 −1.2 (3) C15—C16—C17—C18 179.46 (17)
C1—C2—C3—C4 0.6 (3) C22—C17—C18—C19 −0.2 (3)
C2—C3—C4—C5 0.4 (3) C16—C17—C18—C19 −179.69 (18)
C3—C4—C5—C6 −0.7 (3) C17—C18—C19—C20 0.8 (3)
C3—C4—C5—S3 177.48 (15) C18—C19—C20—C21 −1.0 (3)
C4—C5—C6—C1 0.1 (2) C19—C20—C21—C22 0.7 (3)
S3—C5—C6—C1 −178.33 (13) C20—C21—C22—C17 −0.1 (3)
C4—C5—C6—C7 178.37 (16) C20—C21—C22—S2 179.76 (14)
S3—C5—C6—C7 −0.02 (18) C18—C17—C22—C21 −0.2 (2)
C2—C1—C6—C5 0.8 (2) C16—C17—C22—C21 179.43 (15)
C2—C1—C6—C7 −177.15 (17) C18—C17—C22—S2 179.96 (13)
C5—C6—C7—C8 −0.8 (2) C16—C17—C22—S2 −0.43 (18)
C1—C6—C7—C8 177.27 (16) C9—C10—O1—C11A 166.6 (2)
C6—C7—C8—C9 −177.96 (15) C13—C10—O1—C11A −15.2 (3)
C6—C7—C8—S3 1.29 (18) C9—C10—O1—C11B −166.3 (3)
C7—C8—C9—C10 −20.4 (3) C13—C10—O1—C11B 11.9 (3)
S3—C8—C9—C10 160.45 (14) C12A—C11A—O1—C10 43.7 (3)
C7—C8—C9—S1 159.31 (14) C12A—C11A—O1—C11B −39.6 (5)
S3—C8—C9—S1 −19.89 (18) C12B—C11B—O1—C10 −46.7 (5)
C8—C9—C10—O1 0.2 (3) C12B—C11B—O1—C11A 60.0 (5)
S1—C9—C10—O1 −179.48 (12) C14—C13—O2—C12B −160.2 (3)
C8—C9—C10—C13 −178.15 (15) C10—C13—O2—C12B 19.4 (3)
S1—C9—C10—C13 2.15 (17) C14—C13—O2—C12A 163.91 (19)
O1—C11A—C12A—O2 −62.3 (4) C10—C13—O2—C12A −16.4 (2)
O1—C11B—C12B—O2 64.4 (6) C11B—C12B—O2—C13 −46.1 (4)
O1—C10—C13—O2 0.4 (2) C11B—C12B—O2—C12A 43.8 (2)
C9—C10—C13—O2 178.81 (14) C11A—C12A—O2—C13 47.1 (3)
O1—C10—C13—C14 −179.88 (14) C11A—C12A—O2—C12B −56.9 (4)
C9—C10—C13—C14 −1.5 (2) C10—C9—S1—C14 −1.77 (12)
O2—C13—C14—C15 0.8 (3) C8—C9—S1—C14 178.51 (13)
C10—C13—C14—C15 −178.84 (15) C13—C14—S1—C9 0.95 (13)
O2—C13—C14—S1 179.79 (12) C15—C14—S1—C9 179.96 (13)
C10—C13—C14—S1 0.11 (17) C21—C22—S2—C15 −179.22 (16)
C13—C14—C15—C16 −6.2 (3) C17—C22—S2—C15 0.63 (13)
S1—C14—C15—C16 174.99 (14) C16—C15—S2—C22 −0.69 (13)
C13—C14—C15—S2 171.90 (13) C14—C15—S2—C22 −179.06 (13)
S1—C14—C15—S2 −6.92 (19) C4—C5—S3—C8 −177.68 (17)
C14—C15—C16—C17 178.79 (15) C6—C5—S3—C8 0.63 (13)
S2—C15—C16—C17 0.57 (19) C7—C8—S3—C5 −1.11 (13)
C15—C16—C17—C22 −0.1 (2) C9—C8—S3—C5 178.20 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2577).

References

  1. Amaladass, P., Clement, J. A. & Mohanakrishnan, A. K. (2007). Tetrahedron, 63, 10363–1067.
  2. Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci.66, 1322–1334. [DOI] [PubMed]
  4. Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung.53, 121–128. [PubMed]
  5. Dzhurayev, A. D., Karimkulov, K. M., Makhsumov, A. G. & Amanov, N. (1992). Khim. Farm. Zh.26, 73–75.
  6. EI-Maghraby, A. A., Haroun, B. & Mohammed, N. A. (1984). Egypt. J. Pharm. Sci.23, 327–336.
  7. Gewald, K., Schinke, E. & Botcher, H. (1996). Chem. Ber.99, 99–100.
  8. Lakshmi, V. V., Sridhar, P. & Polasa, H. (1985). Indian J. Pharm. Sci.47, 202–204.
  9. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  10. Pellis, G. & West, G. B. (1968). Progress in Medicinal Chemistry, Vol. 5, pp. 320–324. London: Butterworth & Co. Ltd.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012324/ci2577sup1.cif

e-64-o1049-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012324/ci2577Isup2.hkl

e-64-o1049-Isup2.hkl (338.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES