Abstract
The title compound, [Cu2{SC(NH2)NHNH2}6]I2, was obtained by the reaction of CuI and thiosemicarbazide (TSCZ) in acetonitrile. Each CuI ion is coordinated by four S atoms of the TSCZ ligands, forming a tetrahedral geometry. Centrosymmetric dimers are formed by two coordination tetrahedra sharing a common edge, with a Cu⋯Cu distance of 2.8236 (14) Å. The I− ion does not have any direct interaction with the metal. The crystal structure is stabilized by weak N—H⋯N, N—H⋯S and N—H⋯I hydrogen bonds, forming a three-dimensional network structure.
Related literature
For similar structures, see: Chattopadhyay et al. (1991 ▶); Burrows et al. (2004 ▶); Tong et al. (2000 ▶).
Experimental
Crystal data
[Cu2(CH5N3S)6]I2
M r = 927.72
Monoclinic,
a = 16.437 (4) Å
b = 8.4174 (15) Å
c = 22.546 (4) Å
β = 105.385 (5)°
V = 3007.6 (10) Å3
Z = 4
Mo Kα radiation
μ = 3.92 mm−1
T = 273 (2) K
0.45 × 0.37 × 0.23 mm
Data collection
Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.272, T max = 0.466 (expected range = 0.237–0.406)
7573 measured reflections
2636 independent reflections
2135 reflections with I > 2σ(I)
R int = 0.040
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.106
S = 1.01
2636 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.87 e Å−3
Δρmin = −0.99 e Å−3
Data collection: SMART (Bruker, 1997 ▶); cell refinement: SAINT (Bruker, 1997 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014001/cf2195sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N1—H1A⋯N9i | 0.86 | 2.44 | 3.219 (6) | 152 |
| N1—H1B⋯S2 | 0.86 | 2.73 | 3.426 (5) | 140 |
| N2—H2⋯I1ii | 0.86 | 2.80 | 3.526 (5) | 143 |
| N3—H3B⋯S3iii | 0.86 | 2.95 | 3.692 (5) | 145 |
| N4—H4A⋯S2iv | 0.86 | 2.72 | 3.446 (4) | 142 |
| N4—H4B⋯N6v | 0.86 | 2.38 | 3.225 (6) | 167 |
| N5—H5⋯S1 | 0.86 | 2.79 | 3.424 (4) | 132 |
| N6—H6A⋯N4iv | 0.86 | 2.52 | 3.225 (6) | 139 |
| N7—H7B⋯I1vi | 0.86 | 3.15 | 3.620 (4) | 117 |
| N8—H8⋯S1vii | 0.86 | 2.68 | 3.499 (4) | 161 |
| N9—H9B⋯I1viii | 0.86 | 2.98 | 3.608 (5) | 132 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
; (v)
; (vi)
; (vii)
; (viii)
.
Acknowledgments
We acknowledge the Natural Science Foundation of Liaocheng University (X051002) for support.
supplementary crystallographic information
Comment
In previous papers, thiosemicarbazide (TSCZ) has two coordination types; one is as a monodentate S-donor (Chattopadhyay et al., 1991; Tong et al., 2000), the other is as an S,N-chelating agent (Burrows et al., 2004). We report the synthesis and the structure of a TSCZ complex of cuprous iodide, (I), in which TSCZ acts as a monodentate S-donor. As shown in Fig. 1, each CuI atom is in a tetrahedral coordination environment. It is coordinated by two bridging TSCZ ligands and two terminal TSCZ ligands. The Cu—S distances are 2.3118 (14), 2.3192 (13), 2.4098 (13) and 2.4136 (14) Å, which are longer than 2.2266 (1) Å for [Cu(SC(NH2)NHNH2)Cl2] (Chattopadhyay et al., 1991). The bond lengths for S=C are 1.730 (5), 1.726 (4) and 1.702 (5) Å; the corresponding bond length in [Cu(SC(NH2)NHNH2)Cl2] is 1.717 (4)Å (Chattopadhyay et al., 1991).
In the crystal structure, hydrogen bonds are involved. Intramolecular N—H···S interactions appear to influence the conformation of the dimer, while intermolecular N—H···N, N—H···S and N—H···I interactions link the dimers and anions into a three-dimensional network structure (Fig. 2).
Experimental
CuI (0.19 g 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were refluxed in 10 ml acetonitrile for 24 h, and a colorless solution formed. After filtration, the solution was allowed to evaporate slowly, and crystals suitable for X-ray diffraction were obtained after several days.
Refinement
All H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).
Figures
Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. [Symmetry code for unlabeled atoms: 1 - x, y, 3/2 - z.]
Fig. 2.
Three-dimensional network structure of the title complex.
Crystal data
| [Cu2(C1H5N3S1)6]I2 | F000 = 1808 |
| Mr = 927.72 | Dx = 2.049 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation λ = 0.71073 Å |
| a = 16.437 (4) Å | Cell parameters from 4159 reflections |
| b = 8.4174 (15) Å | θ = 2.6–27.8º |
| c = 22.546 (4) Å | µ = 3.92 mm−1 |
| β = 105.385 (5)º | T = 273 (2) K |
| V = 3007.6 (10) Å3 | Block, colorless |
| Z = 4 | 0.45 × 0.37 × 0.23 mm |
Data collection
| Bruker SMART CCD diffractometer | 2636 independent reflections |
| Radiation source: fine-focus sealed tube | 2135 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.040 |
| T = 273(2) K | θmax = 25.0º |
| φ and ω scans | θmin = 2.7º |
| Absorption correction: multi-scan(SADABS; Sheldrick, 1996) | h = −19→19 |
| Tmin = 0.272, Tmax = 0.466 | k = −10→9 |
| 7573 measured reflections | l = −26→14 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.037 | H-atom parameters constrained |
| wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.059P)2 + 7.7455P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.01 | (Δ/σ)max < 0.001 |
| 2636 reflections | Δρmax = 0.87 e Å−3 |
| 154 parameters | Δρmin = −0.99 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.46872 (4) | −0.07773 (6) | 0.68532 (3) | 0.04027 (19) | |
| I1 | 0.65686 (2) | 0.58550 (4) | 0.582631 (19) | 0.05668 (17) | |
| N1 | 0.5760 (3) | 0.0278 (5) | 0.5883 (2) | 0.0488 (11) | |
| H1A | 0.6145 | 0.0354 | 0.5689 | 0.059* | |
| H1B | 0.5809 | −0.0413 | 0.6171 | 0.059* | |
| N2 | 0.5046 (3) | 0.2253 (5) | 0.5297 (2) | 0.0543 (12) | |
| H2 | 0.4618 | 0.2879 | 0.5195 | 0.065* | |
| N3 | 0.5685 (3) | 0.2350 (6) | 0.4990 (2) | 0.0617 (13) | |
| H3A | 0.6114 | 0.1726 | 0.5091 | 0.074* | |
| H3B | 0.5647 | 0.3034 | 0.4700 | 0.074* | |
| N4 | 0.7280 (3) | 0.1713 (5) | 0.7543 (3) | 0.0783 (19) | |
| H4A | 0.7449 | 0.2677 | 0.7531 | 0.094* | |
| H4B | 0.7643 | 0.0957 | 0.7643 | 0.094* | |
| N5 | 0.5934 (2) | 0.2573 (4) | 0.7257 (2) | 0.0407 (9) | |
| H5 | 0.5402 | 0.2375 | 0.7164 | 0.049* | |
| N6 | 0.6214 (3) | 0.4144 (4) | 0.7244 (2) | 0.0467 (11) | |
| H6A | 0.6746 | 0.4347 | 0.7336 | 0.056* | |
| H6B | 0.5854 | 0.4904 | 0.7144 | 0.056* | |
| N7 | 0.2933 (3) | −0.2581 (5) | 0.5981 (2) | 0.0601 (14) | |
| H7A | 0.2449 | −0.2781 | 0.5732 | 0.072* | |
| H7B | 0.3049 | −0.1636 | 0.6124 | 0.072* | |
| N8 | 0.3286 (3) | −0.5151 (5) | 0.5913 (2) | 0.0492 (11) | |
| H8 | 0.3644 | −0.5916 | 0.6010 | 0.059* | |
| N9 | 0.2482 (3) | −0.5449 (5) | 0.5508 (2) | 0.0555 (12) | |
| H9A | 0.2120 | −0.4692 | 0.5409 | 0.067* | |
| H9B | 0.2355 | −0.6387 | 0.5362 | 0.067* | |
| S1 | 0.42975 (7) | 0.11539 (13) | 0.61021 (6) | 0.0390 (3) | |
| S2 | 0.61502 (7) | −0.05460 (13) | 0.74208 (6) | 0.0344 (3) | |
| S3 | 0.44805 (8) | −0.34566 (13) | 0.66223 (6) | 0.0423 (3) | |
| C1 | 0.5100 (3) | 0.1217 (5) | 0.5738 (2) | 0.0361 (10) | |
| C2 | 0.6478 (3) | 0.1399 (5) | 0.7409 (2) | 0.0347 (10) | |
| C3 | 0.3498 (3) | −0.3726 (5) | 0.6145 (2) | 0.0360 (11) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0445 (4) | 0.0355 (3) | 0.0419 (4) | −0.0033 (2) | 0.0134 (3) | 0.0014 (3) |
| I1 | 0.0626 (3) | 0.0556 (3) | 0.0537 (3) | 0.01216 (16) | 0.0185 (2) | 0.01200 (17) |
| N1 | 0.049 (3) | 0.056 (2) | 0.047 (3) | 0.011 (2) | 0.023 (2) | 0.011 (2) |
| N2 | 0.065 (3) | 0.052 (3) | 0.049 (3) | 0.006 (2) | 0.020 (2) | 0.017 (2) |
| N3 | 0.081 (3) | 0.063 (3) | 0.051 (3) | 0.006 (2) | 0.035 (3) | 0.013 (2) |
| N4 | 0.032 (3) | 0.043 (3) | 0.143 (6) | −0.0066 (19) | −0.006 (3) | 0.028 (3) |
| N5 | 0.030 (2) | 0.0341 (19) | 0.057 (3) | −0.0014 (16) | 0.0111 (18) | −0.0001 (19) |
| N6 | 0.035 (2) | 0.032 (2) | 0.069 (3) | −0.0013 (15) | 0.006 (2) | 0.0072 (19) |
| N7 | 0.044 (3) | 0.041 (2) | 0.084 (4) | 0.008 (2) | −0.004 (2) | −0.010 (2) |
| N8 | 0.046 (2) | 0.035 (2) | 0.066 (3) | 0.0022 (18) | 0.013 (2) | −0.010 (2) |
| N9 | 0.046 (3) | 0.045 (2) | 0.073 (4) | −0.0051 (19) | 0.010 (2) | −0.020 (2) |
| S1 | 0.0362 (6) | 0.0352 (6) | 0.0458 (8) | 0.0042 (5) | 0.0110 (5) | 0.0067 (5) |
| S2 | 0.0296 (6) | 0.0322 (5) | 0.0427 (7) | 0.0013 (4) | 0.0118 (5) | 0.0042 (5) |
| S3 | 0.0418 (7) | 0.0307 (6) | 0.0511 (8) | 0.0054 (5) | 0.0064 (6) | −0.0008 (5) |
| C1 | 0.044 (3) | 0.028 (2) | 0.034 (3) | −0.0051 (19) | 0.006 (2) | −0.001 (2) |
| C2 | 0.031 (2) | 0.038 (2) | 0.034 (3) | −0.0014 (19) | 0.007 (2) | 0.009 (2) |
| C3 | 0.040 (3) | 0.032 (2) | 0.041 (3) | −0.0030 (19) | 0.019 (2) | −0.002 (2) |
Geometric parameters (Å, °)
| Cu1—S1 | 2.3118 (14) | N5—N6 | 1.404 (5) |
| Cu1—S3 | 2.3192 (13) | N5—H5 | 0.860 |
| Cu1—S2i | 2.4098 (13) | N6—H6A | 0.860 |
| Cu1—S2 | 2.4136 (14) | N6—H6B | 0.860 |
| Cu1—Cu1i | 2.8236 (14) | N7—C3 | 1.321 (6) |
| N1—C1 | 1.312 (6) | N7—H7A | 0.860 |
| N1—H1A | 0.860 | N7—H7B | 0.860 |
| N1—H1B | 0.860 | N8—C3 | 1.318 (6) |
| N2—C1 | 1.307 (6) | N8—N9 | 1.415 (6) |
| N2—N3 | 1.405 (6) | N8—H8 | 0.860 |
| N2—H2 | 0.860 | N9—H9A | 0.860 |
| N3—H3A | 0.860 | N9—H9B | 0.860 |
| N3—H3B | 0.860 | S1—C1 | 1.730 (5) |
| N4—C2 | 1.300 (6) | S2—C2 | 1.726 (4) |
| N4—H4A | 0.860 | S2—Cu1i | 2.4098 (13) |
| N4—H4B | 0.860 | S3—C3 | 1.702 (5) |
| N5—C2 | 1.315 (6) | ||
| S1—Cu1—S3 | 121.59 (6) | N5—N6—H6B | 120.0 |
| S1—Cu1—S2i | 110.09 (5) | H6A—N6—H6B | 120.0 |
| S3—Cu1—S2i | 98.91 (5) | C3—N7—H7A | 120.0 |
| S1—Cu1—S2 | 112.03 (5) | C3—N7—H7B | 120.0 |
| S3—Cu1—S2 | 105.28 (5) | H7A—N7—H7B | 120.0 |
| S2i—Cu1—S2 | 107.55 (4) | C3—N8—N9 | 121.4 (4) |
| S1—Cu1—Cu1i | 135.30 (4) | C3—N8—H8 | 119.3 |
| S3—Cu1—Cu1i | 102.91 (4) | N9—N8—H8 | 119.3 |
| S2i—Cu1—Cu1i | 54.23 (4) | N8—N9—H9A | 120.0 |
| S2—Cu1—Cu1i | 54.11 (4) | N8—N9—H9B | 120.0 |
| C1—N1—H1A | 120.0 | H9A—N9—H9B | 120.0 |
| C1—N1—H1B | 120.0 | C1—S1—Cu1 | 105.77 (16) |
| H1A—N1—H1B | 120.0 | C2—S2—Cu1i | 108.92 (16) |
| C1—N2—N3 | 120.4 (4) | C2—S2—Cu1 | 109.82 (16) |
| C1—N2—H2 | 119.8 | Cu1i—S2—Cu1 | 71.66 (4) |
| N3—N2—H2 | 119.8 | C3—S3—Cu1 | 109.23 (15) |
| N2—N3—H3A | 120.0 | N2—C1—N1 | 118.4 (5) |
| N2—N3—H3B | 120.0 | N2—C1—S1 | 118.4 (4) |
| H3A—N3—H3B | 120.0 | N1—C1—S1 | 123.2 (4) |
| C2—N4—H4A | 120.0 | N4—C2—N5 | 119.0 (4) |
| C2—N4—H4B | 120.0 | N4—C2—S2 | 119.4 (4) |
| H4A—N4—H4B | 120.0 | N5—C2—S2 | 121.6 (3) |
| C2—N5—N6 | 120.6 (4) | N8—C3—N7 | 117.4 (5) |
| C2—N5—H5 | 119.7 | N8—C3—S3 | 118.6 (4) |
| N6—N5—H5 | 119.7 | N7—C3—S3 | 124.0 (4) |
| N5—N6—H6A | 120.0 |
Symmetry codes: (i) −x+1, y, −z+3/2.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···N9ii | 0.86 | 2.44 | 3.219 (6) | 152 |
| N1—H1B···S2 | 0.86 | 2.73 | 3.426 (5) | 140 |
| N2—H2···I1iii | 0.86 | 2.80 | 3.526 (5) | 143 |
| N3—H3B···S3iv | 0.86 | 2.95 | 3.692 (5) | 145 |
| N4—H4A···S2v | 0.86 | 2.72 | 3.446 (4) | 142 |
| N4—H4B···N6vi | 0.86 | 2.38 | 3.225 (6) | 167 |
| N5—H5···S1 | 0.86 | 2.79 | 3.424 (4) | 132 |
| N6—H6A···N4v | 0.86 | 2.52 | 3.225 (6) | 139 |
| N7—H7B···I1vii | 0.86 | 3.15 | 3.620 (4) | 117 |
| N8—H8···S1viii | 0.86 | 2.68 | 3.499 (4) | 161 |
| N9—H9B···I1ix | 0.86 | 2.98 | 3.608 (5) | 132 |
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, y−1/2, z; (viii) x, y−1, z; (ix) x−1/2, y−3/2, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2195).
References
- Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des.4, 813–822.
- Chattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Tong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44–45. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014001/cf2195sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


