Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):m820. doi: 10.1107/S1600536808014001

Di-μ-thio­semicarbazide-κ4 S:S-bis­[bis­(thio­semicarbazide-κS)copper(I)] diiodide

Li Jia a, Shou-Xin Ma b, Da-Cheng Li c,*
PMCID: PMC2961471  PMID: 21202503

Abstract

The title compound, [Cu2{SC(NH2)NHNH2}6]I2, was obtained by the reaction of CuI and thio­semicarbazide (TSCZ) in acetonitrile. Each CuI ion is coordinated by four S atoms of the TSCZ ligands, forming a tetra­hedral geometry. Centrosymmetric dimers are formed by two coordination tetra­hedra sharing a common edge, with a Cu⋯Cu distance of 2.8236 (14) Å. The I ion does not have any direct inter­action with the metal. The crystal structure is stabilized by weak N—H⋯N, N—H⋯S and N—H⋯I hydrogen bonds, forming a three-dimensional network structure.

Related literature

For similar structures, see: Chattopadhyay et al. (1991); Burrows et al. (2004); Tong et al. (2000).graphic file with name e-64-0m820-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CH5N3S)6]I2

  • M r = 927.72

  • Monoclinic, Inline graphic

  • a = 16.437 (4) Å

  • b = 8.4174 (15) Å

  • c = 22.546 (4) Å

  • β = 105.385 (5)°

  • V = 3007.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 273 (2) K

  • 0.45 × 0.37 × 0.23 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.272, T max = 0.466 (expected range = 0.237–0.406)

  • 7573 measured reflections

  • 2636 independent reflections

  • 2135 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.106

  • S = 1.01

  • 2636 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.99 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014001/cf2195sup1.cif

e-64-0m820-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl

e-64-0m820-Isup2.hkl (129.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N9i 0.86 2.44 3.219 (6) 152
N1—H1B⋯S2 0.86 2.73 3.426 (5) 140
N2—H2⋯I1ii 0.86 2.80 3.526 (5) 143
N3—H3B⋯S3iii 0.86 2.95 3.692 (5) 145
N4—H4A⋯S2iv 0.86 2.72 3.446 (4) 142
N4—H4B⋯N6v 0.86 2.38 3.225 (6) 167
N5—H5⋯S1 0.86 2.79 3.424 (4) 132
N6—H6A⋯N4iv 0.86 2.52 3.225 (6) 139
N7—H7B⋯I1vi 0.86 3.15 3.620 (4) 117
N8—H8⋯S1vii 0.86 2.68 3.499 (4) 161
N9—H9B⋯I1viii 0.86 2.98 3.608 (5) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

We acknowledge the Natural Science Foundation of Liaocheng University (X051002) for support.

supplementary crystallographic information

Comment

In previous papers, thiosemicarbazide (TSCZ) has two coordination types; one is as a monodentate S-donor (Chattopadhyay et al., 1991; Tong et al., 2000), the other is as an S,N-chelating agent (Burrows et al., 2004). We report the synthesis and the structure of a TSCZ complex of cuprous iodide, (I), in which TSCZ acts as a monodentate S-donor. As shown in Fig. 1, each CuI atom is in a tetrahedral coordination environment. It is coordinated by two bridging TSCZ ligands and two terminal TSCZ ligands. The Cu—S distances are 2.3118 (14), 2.3192 (13), 2.4098 (13) and 2.4136 (14) Å, which are longer than 2.2266 (1) Å for [Cu(SC(NH2)NHNH2)Cl2] (Chattopadhyay et al., 1991). The bond lengths for S=C are 1.730 (5), 1.726 (4) and 1.702 (5) Å; the corresponding bond length in [Cu(SC(NH2)NHNH2)Cl2] is 1.717 (4)Å (Chattopadhyay et al., 1991).

In the crystal structure, hydrogen bonds are involved. Intramolecular N—H···S interactions appear to influence the conformation of the dimer, while intermolecular N—H···N, N—H···S and N—H···I interactions link the dimers and anions into a three-dimensional network structure (Fig. 2).

Experimental

CuI (0.19 g 1 mmol) and thiosemicarbazide (0.18 g, 2 mmol) were refluxed in 10 ml acetonitrile for 24 h, and a colorless solution formed. After filtration, the solution was allowed to evaporate slowly, and crystals suitable for X-ray diffraction were obtained after several days.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms, with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms. [Symmetry code for unlabeled atoms: 1 - x, y, 3/2 - z.]

Fig. 2.

Fig. 2.

Three-dimensional network structure of the title complex.

Crystal data

[Cu2(C1H5N3S1)6]I2 F000 = 1808
Mr = 927.72 Dx = 2.049 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
a = 16.437 (4) Å Cell parameters from 4159 reflections
b = 8.4174 (15) Å θ = 2.6–27.8º
c = 22.546 (4) Å µ = 3.92 mm1
β = 105.385 (5)º T = 273 (2) K
V = 3007.6 (10) Å3 Block, colorless
Z = 4 0.45 × 0.37 × 0.23 mm

Data collection

Bruker SMART CCD diffractometer 2636 independent reflections
Radiation source: fine-focus sealed tube 2135 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.040
T = 273(2) K θmax = 25.0º
φ and ω scans θmin = 2.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −19→19
Tmin = 0.272, Tmax = 0.466 k = −10→9
7573 measured reflections l = −26→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H-atom parameters constrained
wR(F2) = 0.106   w = 1/[σ2(Fo2) + (0.059P)2 + 7.7455P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2636 reflections Δρmax = 0.87 e Å3
154 parameters Δρmin = −0.99 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.46872 (4) −0.07773 (6) 0.68532 (3) 0.04027 (19)
I1 0.65686 (2) 0.58550 (4) 0.582631 (19) 0.05668 (17)
N1 0.5760 (3) 0.0278 (5) 0.5883 (2) 0.0488 (11)
H1A 0.6145 0.0354 0.5689 0.059*
H1B 0.5809 −0.0413 0.6171 0.059*
N2 0.5046 (3) 0.2253 (5) 0.5297 (2) 0.0543 (12)
H2 0.4618 0.2879 0.5195 0.065*
N3 0.5685 (3) 0.2350 (6) 0.4990 (2) 0.0617 (13)
H3A 0.6114 0.1726 0.5091 0.074*
H3B 0.5647 0.3034 0.4700 0.074*
N4 0.7280 (3) 0.1713 (5) 0.7543 (3) 0.0783 (19)
H4A 0.7449 0.2677 0.7531 0.094*
H4B 0.7643 0.0957 0.7643 0.094*
N5 0.5934 (2) 0.2573 (4) 0.7257 (2) 0.0407 (9)
H5 0.5402 0.2375 0.7164 0.049*
N6 0.6214 (3) 0.4144 (4) 0.7244 (2) 0.0467 (11)
H6A 0.6746 0.4347 0.7336 0.056*
H6B 0.5854 0.4904 0.7144 0.056*
N7 0.2933 (3) −0.2581 (5) 0.5981 (2) 0.0601 (14)
H7A 0.2449 −0.2781 0.5732 0.072*
H7B 0.3049 −0.1636 0.6124 0.072*
N8 0.3286 (3) −0.5151 (5) 0.5913 (2) 0.0492 (11)
H8 0.3644 −0.5916 0.6010 0.059*
N9 0.2482 (3) −0.5449 (5) 0.5508 (2) 0.0555 (12)
H9A 0.2120 −0.4692 0.5409 0.067*
H9B 0.2355 −0.6387 0.5362 0.067*
S1 0.42975 (7) 0.11539 (13) 0.61021 (6) 0.0390 (3)
S2 0.61502 (7) −0.05460 (13) 0.74208 (6) 0.0344 (3)
S3 0.44805 (8) −0.34566 (13) 0.66223 (6) 0.0423 (3)
C1 0.5100 (3) 0.1217 (5) 0.5738 (2) 0.0361 (10)
C2 0.6478 (3) 0.1399 (5) 0.7409 (2) 0.0347 (10)
C3 0.3498 (3) −0.3726 (5) 0.6145 (2) 0.0360 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0445 (4) 0.0355 (3) 0.0419 (4) −0.0033 (2) 0.0134 (3) 0.0014 (3)
I1 0.0626 (3) 0.0556 (3) 0.0537 (3) 0.01216 (16) 0.0185 (2) 0.01200 (17)
N1 0.049 (3) 0.056 (2) 0.047 (3) 0.011 (2) 0.023 (2) 0.011 (2)
N2 0.065 (3) 0.052 (3) 0.049 (3) 0.006 (2) 0.020 (2) 0.017 (2)
N3 0.081 (3) 0.063 (3) 0.051 (3) 0.006 (2) 0.035 (3) 0.013 (2)
N4 0.032 (3) 0.043 (3) 0.143 (6) −0.0066 (19) −0.006 (3) 0.028 (3)
N5 0.030 (2) 0.0341 (19) 0.057 (3) −0.0014 (16) 0.0111 (18) −0.0001 (19)
N6 0.035 (2) 0.032 (2) 0.069 (3) −0.0013 (15) 0.006 (2) 0.0072 (19)
N7 0.044 (3) 0.041 (2) 0.084 (4) 0.008 (2) −0.004 (2) −0.010 (2)
N8 0.046 (2) 0.035 (2) 0.066 (3) 0.0022 (18) 0.013 (2) −0.010 (2)
N9 0.046 (3) 0.045 (2) 0.073 (4) −0.0051 (19) 0.010 (2) −0.020 (2)
S1 0.0362 (6) 0.0352 (6) 0.0458 (8) 0.0042 (5) 0.0110 (5) 0.0067 (5)
S2 0.0296 (6) 0.0322 (5) 0.0427 (7) 0.0013 (4) 0.0118 (5) 0.0042 (5)
S3 0.0418 (7) 0.0307 (6) 0.0511 (8) 0.0054 (5) 0.0064 (6) −0.0008 (5)
C1 0.044 (3) 0.028 (2) 0.034 (3) −0.0051 (19) 0.006 (2) −0.001 (2)
C2 0.031 (2) 0.038 (2) 0.034 (3) −0.0014 (19) 0.007 (2) 0.009 (2)
C3 0.040 (3) 0.032 (2) 0.041 (3) −0.0030 (19) 0.019 (2) −0.002 (2)

Geometric parameters (Å, °)

Cu1—S1 2.3118 (14) N5—N6 1.404 (5)
Cu1—S3 2.3192 (13) N5—H5 0.860
Cu1—S2i 2.4098 (13) N6—H6A 0.860
Cu1—S2 2.4136 (14) N6—H6B 0.860
Cu1—Cu1i 2.8236 (14) N7—C3 1.321 (6)
N1—C1 1.312 (6) N7—H7A 0.860
N1—H1A 0.860 N7—H7B 0.860
N1—H1B 0.860 N8—C3 1.318 (6)
N2—C1 1.307 (6) N8—N9 1.415 (6)
N2—N3 1.405 (6) N8—H8 0.860
N2—H2 0.860 N9—H9A 0.860
N3—H3A 0.860 N9—H9B 0.860
N3—H3B 0.860 S1—C1 1.730 (5)
N4—C2 1.300 (6) S2—C2 1.726 (4)
N4—H4A 0.860 S2—Cu1i 2.4098 (13)
N4—H4B 0.860 S3—C3 1.702 (5)
N5—C2 1.315 (6)
S1—Cu1—S3 121.59 (6) N5—N6—H6B 120.0
S1—Cu1—S2i 110.09 (5) H6A—N6—H6B 120.0
S3—Cu1—S2i 98.91 (5) C3—N7—H7A 120.0
S1—Cu1—S2 112.03 (5) C3—N7—H7B 120.0
S3—Cu1—S2 105.28 (5) H7A—N7—H7B 120.0
S2i—Cu1—S2 107.55 (4) C3—N8—N9 121.4 (4)
S1—Cu1—Cu1i 135.30 (4) C3—N8—H8 119.3
S3—Cu1—Cu1i 102.91 (4) N9—N8—H8 119.3
S2i—Cu1—Cu1i 54.23 (4) N8—N9—H9A 120.0
S2—Cu1—Cu1i 54.11 (4) N8—N9—H9B 120.0
C1—N1—H1A 120.0 H9A—N9—H9B 120.0
C1—N1—H1B 120.0 C1—S1—Cu1 105.77 (16)
H1A—N1—H1B 120.0 C2—S2—Cu1i 108.92 (16)
C1—N2—N3 120.4 (4) C2—S2—Cu1 109.82 (16)
C1—N2—H2 119.8 Cu1i—S2—Cu1 71.66 (4)
N3—N2—H2 119.8 C3—S3—Cu1 109.23 (15)
N2—N3—H3A 120.0 N2—C1—N1 118.4 (5)
N2—N3—H3B 120.0 N2—C1—S1 118.4 (4)
H3A—N3—H3B 120.0 N1—C1—S1 123.2 (4)
C2—N4—H4A 120.0 N4—C2—N5 119.0 (4)
C2—N4—H4B 120.0 N4—C2—S2 119.4 (4)
H4A—N4—H4B 120.0 N5—C2—S2 121.6 (3)
C2—N5—N6 120.6 (4) N8—C3—N7 117.4 (5)
C2—N5—H5 119.7 N8—C3—S3 118.6 (4)
N6—N5—H5 119.7 N7—C3—S3 124.0 (4)
N5—N6—H6A 120.0

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···N9ii 0.86 2.44 3.219 (6) 152
N1—H1B···S2 0.86 2.73 3.426 (5) 140
N2—H2···I1iii 0.86 2.80 3.526 (5) 143
N3—H3B···S3iv 0.86 2.95 3.692 (5) 145
N4—H4A···S2v 0.86 2.72 3.446 (4) 142
N4—H4B···N6vi 0.86 2.38 3.225 (6) 167
N5—H5···S1 0.86 2.79 3.424 (4) 132
N6—H6A···N4v 0.86 2.52 3.225 (6) 139
N7—H7B···I1vii 0.86 3.15 3.620 (4) 117
N8—H8···S1viii 0.86 2.68 3.499 (4) 161
N9—H9B···I1ix 0.86 2.98 3.608 (5) 132

Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) −x+3/2, y+1/2, −z+3/2; (vi) −x+3/2, y−1/2, −z+3/2; (vii) x−1/2, y−1/2, z; (viii) x, y−1, z; (ix) x−1/2, y−3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2195).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. (2004). Cryst. Growth Des.4, 813–822.
  3. Chattopadhyay, D., Majumdar, S. K., Lowe, P., Chattopadhyay, S. K. & Ghosh, S. (1991). J. Chem. Soc. Dalton Trans. pp. 2121–2124.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tong, Y.-X., Su, C.-Y., Zhang, Z.-F., Kang, B.-S., Yu, X.-L. & Chen, X.-M. (2000). Acta Cryst. C56, 44–45. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014001/cf2195sup1.cif

e-64-0m820-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014001/cf2195Isup2.hkl

e-64-0m820-Isup2.hkl (129.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES