Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 24;64(Pt 6):o1141. doi: 10.1107/S1600536808015043

1-Methyl-1H-benzimidazole-2(3H)-thione

Hizbullah Khan a, Amin Badshah a,*, Farkhanda Shaheen a, Christine Gieck b, Rizwana Aleem Qureshi c
PMCID: PMC2961472  PMID: 21202650

Abstract

The title compound, C8H8N2S, was prepared by the condensation of N-methyl-1,2-phenyl­enediamine and carbon disulfide. The crystal structure is stabilized by a C—H⋯π inter­action between a benzene H atom and the benzene ring of a neighbouring mol­ecule, and by inter­molecular N—H⋯S inter­actions.

Related literature

For related literature, see: Baily et al. (1996); Koch (2001); Namgun et al. (2001); Schuster et al. (1990); Patel & Chedekel (1984).graphic file with name e-64-o1141-scheme1.jpg

Experimental

Crystal data

  • C8H8N2S

  • M r = 164.22

  • Monoclinic, Inline graphic

  • a = 9.997 (4) Å

  • b = 5.8140 (7) Å

  • c = 13.703 (4) Å

  • β = 94.05 (3)°

  • V = 794.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 (2) K

  • 0.20 × 0.10 × 0.02 mm

Data collection

  • Oxford Diffraction Xcalibur2 CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction; 2004; Clark & Reid, 1995) T min = 0.929, T max = 0.967

  • 7237 measured reflections

  • 962 independent reflections

  • 855 reflections with I > 2σ(I)

  • R int = 0.023

  • θmax = 23.1°

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.077

  • S = 1.09

  • 962 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2004); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015043/lx2055sup1.cif

e-64-o1141-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015043/lx2055Isup2.hkl

e-64-o1141-Isup2.hkl (47.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Si 0.86 2.57 3.408 (2) 166
C3—H3⋯Cgii 0.93 2.74 3.464 (3) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg is the centroid of the C2–C7 ring.

Acknowledgments

The authors acknowledge the Higher Education Commission, Pakistan, for financial support.

supplementary crystallographic information

Comment

N,N'- disubstituted and N-substituted thiourea derivatives are the major building blocks of organic macromolecular compounds. Thiourea derivatives such as benzothiazoles have been isolated by bromination of arylthioureas (Patil & Chedekel, 1984) and by condensation of 2-aminothiazole (Baily et al., 1996), by cyclization of N-(2-hydroxyethyl-N-methylthioureas and 2-methyl-aminothiazole (Namgun et al., 2001). Aliphatic and acylthioureas have a wide range of application due to their coordination behavior towards transition metals (Schuster et al., 1990). N,N-dialkyl-N-arylthioureas have been used for the extraction of metals such as nickel, palladium and platinum (Koch, 2001). Here we report the crystal structure of the title compound, 1-methyl-2H-benzimidazole-2-thione (Fig. 1).

The benzimidazole unit is essentially planar, with a mean deviation of 0.023 Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by a C—H···π interaction between a benzene H atom and the benzene ring of neighbouring molecules, with a C3—H3···Cgi separation of 2.735 (3) Å (Fig. 2 and Table 1; Cg is the C2-C7 benzene ring, symmetry code as in Fig. 2). Additionally, intermolecular N—H···S interactions in the structure were observed (Fig. 2 and Table 1; symmetry code as in Fig. 2).

Experimental

Compound (I) was synthesized by the addition of carbondisulfide (0.79 ml, 13.02 mmol) to N-methyl-1,2-phenylenediamine (0.744 ml, 6.55 mmol) in methanol (20 ml). The resulting mixture was stirred for 24 h, at 0°C temperature, giving a clear light yellow solution. The solution was evaporated under reduced pressure to give a light yellow solid, which was recrystallized in methanol/peteroleum ether (9:1) to afford compound (I) (yield : 76%).

Refinement

All H atoms were placed in idealized positions (C—H = 0.96 A ° (methyl); C—H = 0.93 A ° (aromatic); N—H = 0.86 A °) and refined as riding, with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

C—H···π and N—H···S interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry code: (i) -x+1/2, y-1/2, -z+3/2; (ii) -x+3/2, y+1/2, -z+3/2; (iii) -x+3/2, y-1/2, -z+3/2; (iv) -x+1/2, y+1/2, -z+3/2.]

Crystal data

C8H8N2S F000 = 344
Mr = 164.22 Dx = 1.373 Mg m3
Monoclinic, P21/n Melting point: 402 K
Hall symbol: -P_2yn Mo Kα radiation λ = 0.71073 Å
a = 9.997 (4) Å Cell parameters from 5701 reflections
b = 5.8140 (7) Å θ = 3.7–23.1º
c = 13.703 (4) Å µ = 0.34 mm1
β = 94.05 (3)º T = 293 (2) K
V = 794.5 (4) Å3 Block, colourless
Z = 4 0.20 × 0.10 × 0.02 mm

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer 962 independent reflections
Radiation source: Enhance (Mo) X-ray Source 855 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.023
Detector resolution: 10.0 pixels mm-1 θmax = 23.1º
T = 293(2) K θmin = 3.8º
ω scans h = −10→11
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction; 2004; Clark & Reid, 1995) k = −6→6
Tmin = 0.929, Tmax = 0.967 l = −14→14
7237 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.078   w = 1/[σ2(Fo2) + (0.0353P)2 + 0.4983P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
962 reflections Δρmax = 0.21 e Å3
101 parameters Δρmin = −0.19 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.73449 (6) 0.62833 (10) 0.62836 (4) 0.0475 (3)
N1 0.52959 (17) 0.3736 (3) 0.69273 (12) 0.0345 (5)
N2 0.57646 (17) 0.6789 (3) 0.78071 (12) 0.0380 (5)
H2 0.6119 0.8071 0.8004 0.046*
C1 0.6119 (2) 0.5599 (4) 0.70145 (15) 0.0359 (6)
C2 0.4462 (2) 0.3690 (3) 0.77058 (15) 0.0323 (5)
C3 0.3528 (2) 0.2095 (4) 0.79703 (16) 0.0399 (6)
H3 0.3342 0.0773 0.7603 0.048*
C4 0.2882 (2) 0.2566 (4) 0.88107 (17) 0.0461 (6)
H4 0.2255 0.1524 0.9017 0.055*
C5 0.3145 (2) 0.4548 (4) 0.93499 (17) 0.0466 (6)
H5 0.2684 0.4812 0.9906 0.056*
C6 0.4079 (2) 0.6150 (4) 0.90824 (16) 0.0412 (6)
H6 0.4246 0.7492 0.9440 0.049*
C7 0.4752 (2) 0.5656 (4) 0.82572 (15) 0.0330 (5)
C8 0.5331 (3) 0.1997 (4) 0.61682 (17) 0.0518 (7)
H8A 0.5508 0.2717 0.5560 0.078*
H8B 0.4482 0.1221 0.6098 0.078*
H8C 0.6026 0.0904 0.6345 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0446 (4) 0.0454 (4) 0.0547 (4) 0.0026 (3) 0.0184 (3) 0.0102 (3)
N1 0.0345 (10) 0.0313 (10) 0.0384 (10) 0.0019 (8) 0.0071 (8) −0.0027 (8)
N2 0.0379 (11) 0.0323 (10) 0.0443 (11) −0.0042 (8) 0.0064 (9) −0.0040 (9)
C1 0.0350 (12) 0.0332 (12) 0.0396 (13) 0.0068 (11) 0.0026 (10) 0.0050 (10)
C2 0.0283 (11) 0.0339 (13) 0.0348 (12) 0.0062 (10) 0.0024 (9) 0.0023 (10)
C3 0.0365 (12) 0.0356 (13) 0.0478 (14) −0.0024 (11) 0.0043 (11) −0.0016 (11)
C4 0.0380 (13) 0.0483 (16) 0.0529 (15) −0.0053 (11) 0.0094 (12) 0.0080 (13)
C5 0.0425 (13) 0.0601 (16) 0.0383 (13) 0.0015 (13) 0.0104 (11) 0.0021 (12)
C6 0.0423 (13) 0.0431 (14) 0.0380 (13) 0.0040 (11) 0.0017 (10) −0.0060 (11)
C7 0.0302 (12) 0.0330 (12) 0.0358 (12) 0.0021 (10) 0.0019 (10) 0.0020 (10)
C8 0.0536 (15) 0.0493 (15) 0.0542 (15) −0.0015 (13) 0.0150 (12) −0.0150 (13)

Geometric parameters (Å, °)

S—C1 1.684 (2) C3—H3 0.9300
N1—C1 1.361 (3) C4—C5 1.384 (3)
N1—C2 1.400 (3) C4—H4 0.9300
N1—C8 1.453 (3) C5—C6 1.386 (3)
N2—C1 1.356 (3) C5—H5 0.9300
N2—C7 1.389 (3) C6—C7 1.386 (3)
N2—H2 0.8600 C6—H6 0.9300
C2—C3 1.383 (3) C8—H8A 0.9600
C2—C7 1.389 (3) C8—H8B 0.9600
C3—C4 1.387 (3) C8—H8C 0.9600
C1—N1—C2 109.71 (17) C3—C4—H4 119.2
C1—N1—C8 124.88 (18) C4—C5—C6 121.6 (2)
C2—N1—C8 125.34 (18) C4—C5—H5 119.2
C1—N2—C7 110.71 (18) C6—C5—H5 119.2
C1—N2—H2 124.6 C7—C6—C5 116.8 (2)
C7—N2—H2 124.6 C7—C6—H6 121.6
N2—C1—N1 106.62 (18) C5—C6—H6 121.6
N2—C1—S 126.72 (18) C6—C7—N2 132.5 (2)
N1—C1—S 126.65 (17) C6—C7—C2 121.3 (2)
C3—C2—C7 121.86 (19) N2—C7—C2 106.21 (17)
C3—C2—N1 131.46 (19) N1—C8—H8A 109.5
C7—C2—N1 106.66 (17) N1—C8—H8B 109.5
C2—C3—C4 116.6 (2) H8A—C8—H8B 109.5
C2—C3—H3 121.7 N1—C8—H8C 109.5
C4—C3—H3 121.7 H8A—C8—H8C 109.5
C5—C4—C3 121.7 (2) H8B—C8—H8C 109.5
C5—C4—H4 119.2
C7—N2—C1—N1 2.4 (2) C2—C3—C4—C5 0.9 (3)
C7—N2—C1—S −177.28 (16) C3—C4—C5—C6 −0.7 (4)
C2—N1—C1—N2 −3.2 (2) C4—C5—C6—C7 −1.0 (3)
C8—N1—C1—N2 179.79 (19) C5—C6—C7—N2 −177.1 (2)
C2—N1—C1—S 176.50 (15) C5—C6—C7—C2 2.4 (3)
C8—N1—C1—S −0.5 (3) C1—N2—C7—C6 178.9 (2)
C1—N1—C2—C3 −175.6 (2) C1—N2—C7—C2 −0.7 (2)
C8—N1—C2—C3 1.4 (3) C3—C2—C7—C6 −2.3 (3)
C1—N1—C2—C7 2.8 (2) N1—C2—C7—C6 179.11 (19)
C8—N1—C2—C7 179.79 (19) C3—C2—C7—N2 177.32 (19)
C7—C2—C3—C4 0.6 (3) N1—C2—C7—N2 −1.2 (2)
N1—C2—C3—C4 178.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···Si 0.86 2.57 3.408 (2) 166
C3—H3···Cgii 0.93 2.74 3.464 (3) 136

Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2055).

References

  1. Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett.6, 1409–1413.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Koch, K. R. (2001). Coord. Chem. Rev.216, 473–482.
  4. Namgun, L., Mi-Hyun, C. & Tack, H. K. (2001). J. Korean Chem. Soc.45, 96–99.
  5. Oxford Diffraction (2004). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Patel, D. G. & Chedekel, M. R. (1984). J. Org. Chem.49, 997–1000.
  7. Schuster, M., Kugler, B. & Konig, K. H. (1990). J. Anal. Chem.338, 717–720.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808015043/lx2055sup1.cif

e-64-o1141-sup1.cif (14.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015043/lx2055Isup2.hkl

e-64-o1141-Isup2.hkl (47.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES