Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1042–o1043. doi: 10.1107/S1600536808013354

Benzyl 3-[(E,E)-3-phenyl­prop-2-enyl­idene]dithio­carbazate

M T H Tarafder a,*, K A Crouse b, M Toihidul Islam c, Suchada Chantrapromma d,, Hoong-Kun Fun e,§
PMCID: PMC2961473  PMID: 21202563

Abstract

The title compound, C17H16N2S2, a dithio­carbazate derivative, adopts an EE configuration with respect to the C=C and C=N double bonds of the propenyl­idine group. The 3-phenyl­prop-2-enyl­idene and dithio­carbazate fragments lie essentially in the same plane, with a maximum deviation from that plane of 0.074 (2) Å, while the dihedral angle between the 3-phenyl­prop-2-enyl­idene and the benzyl group is 77.78 (7)°. In the crystal structure, mol­ecules are linked by an N—H⋯S hydrogen bond and a weak C—H⋯S inter­action involving the terminal thione S atom, forming dimers that are arranged into sheets parallel to the bc plane. The crystal structure is also stabilized by C—H⋯π inter­actions.

Related literature

For information on values of bond lengths, see Allen et al. (1987). For related structures of dithio­carbazate derivatives, see, for example: Crouse et al. (2004); Fun et al. (2008); Shanmuga Sundara Raj et al. (2000). For applications and bioactivities of dithio­carbazate derivatives, see, for example: Ali & Tarafder (1977); Ali et al. (2001, 2002, 2008); Chan et al. (2008); Chew et al. (2004); Crouse et al. (2004); Tarafder et al. (1978, 1981, 2001, 2008).graphic file with name e-64-o1042-scheme1.jpg

Experimental

Crystal data

  • C17H16N2S2

  • M r = 312.44

  • Triclinic, Inline graphic

  • a = 5.4350 (3) Å

  • b = 11.6333 (7) Å

  • c = 13.6289 (8) Å

  • α = 66.869 (4)°

  • β = 82.723 (4)°

  • γ = 87.520 (4)°

  • V = 786.04 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100.0 (1) K

  • 0.58 × 0.19 × 0.05 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.829, T max = 0.982

  • 16100 measured reflections

  • 3570 independent reflections

  • 2870 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.07

  • 3570 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013354/sj2494sup1.cif

e-64-o1042-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013354/sj2494Isup2.hkl

e-64-o1042-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯S2i 0.87 (2) 2.53 (2) 3.3714 (19) 165 (2)
C9—H9A⋯S2i 0.93 2.93 3.7264 (18) 144
C15—H15ACg1ii 0.93 2.83 3.649 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C1–C6 phenyl ring.

Acknowledgments

KAC thanks Universiti Putra Malaysia for financial help. MTHT thanks the University of Rajshahi for the provision of laboratory facilities. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

There has been immense interest in nitrogen-sulfur donor ligands since our report on S-benzyldithiocarbazate (SBDTC) (Ali & Tarafder, 1977). There have also been a number of reports of Schiff bases derived from SBDTC (Ali et al., 2001, 2002, 2008; Chan et al., 2008; Chew et al., 2004; Tarafder et al., 1978, 1981, 2001; Raj et al., 2000). The intriguing coordination chemistry and increasingly important biomedical properties of ligands derived from SBDTC have also received much attention (Ali et al., 2001, 2002; Crouse et al., 2004; Tarafder et al., 2001, 2008). The synthesis and structure of SBDTC have been reported previously (Ali & Tarafder (1977); Shanmuga Sundara Raj et al., 2000). In continuation of our research, the title compound (I), a ligand with both N and S donor atoms, was synthesized and its crystal structure is reported here. (I) is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the 3-phenylprop-2-enylidene amide (N2/C9–C17) and benzyl groups (C1–C7) adopt trans and cis positions with respect to the terminal thione S2 atom about the C8-N1 and C8-S1 bonds, respectively. The 3-phenylprop-2-enylidene (C9–C17) and the dithiocarbazate (N1/N2/S1/S2/C8) fragments is essentially planar with maximum deviation 0.074 (2) Å for C11, while the dihedral angle between the 3-phenylprop-2-enylidene and the benzyl group is 77.78 (7)°. The bond lengths and angles are in normal ranges (Allen et al., 1987). However the C═S distance of 1.7466 (17) Å is longer than the typical value of dithiocarbazate derivatives (Crouse et al., 2004; Fun et al., 2008; Shanmuga Sundara Raj et al., 2000) but being intermediate between the values of 1.82 Å for a C—S single bond and 1.56 Å for a C═S double bond (Suton, 1965). The C9–N2 distance of 1.285 (2) Å indicates a double bond charactor. The bond angles S1–C8–S2 [124.67 (10)°] and N1–C8–S1 [113.76 (13)°] also agree with those observed in trans-cisS-benzyl dithiocarbazate (Shanmuga Sundara Raj et al., 2004).

In the crystal packing (Fig. 2), the molecules are linked by an N1—H1···S2i hydrogen bond (symmetry code: i = -x, 1-y, 1-z) (Table 1) and a weak C9—H9A···S2i interaction involving the terminal thione-S atom forming dimers that are arranged into sheets parallel to the bc plane. The crystal is also stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1).

Experimental

The title compound was synthesized by adding cinnamaldehyde (1.34 g, 10 mmol) to a solution of S-benzyldithiocarbazate (SBDTC) (1.98 g, 10 mmol) in absolute ethanol (60 ml) and the mixture was refluxed for 40 min. The yellow precipitate, which formed was separated and dried in vacuo over anhydrous CaCl2 (Yield: 2.1 g, 63%). Yellow needle shaped single crystals of (I) were obtained after recrystallization from absolute ethanol over 15 days; M.p 454 K.

Refinement

The H1N1 hydrogen atom was located from a difference Fourier map and refined freely with isotropic displacement parameters. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for CH and aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.96 Å from S1 and the deepest hole is located at 0.72 Å from S1.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H16N2S2 Z = 2
Mr = 312.44 F000 = 328
Triclinic, P1 Dx = 1.320 Mg m3
Hall symbol: -P 1 Melting point: 454 K
a = 5.4350 (3) Å Mo Kα radiation λ = 0.71073 Å
b = 11.6333 (7) Å Cell parameters from 3570 reflections
c = 13.6289 (8) Å θ = 1.9–27.5º
α = 66.869 (4)º µ = 0.33 mm1
β = 82.723 (4)º T = 100.0 (1) K
γ = 87.520 (4)º Needle, yellow
V = 786.04 (8) Å3 0.58 × 0.19 × 0.05 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 3570 independent reflections
Radiation source: fine-focus sealed tube 2870 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.044
Detector resolution: 8.33 pixels mm-1 θmax = 27.5º
T = 100.0(1) K θmin = 1.9º
ω scans h = −7→7
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −14→15
Tmin = 0.829, Tmax = 0.982 l = −17→17
16100 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.093   w = 1/[σ2(Fo2) + (0.0368P)2 + 0.3179P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3570 reflections Δρmax = 0.29 e Å3
194 parameters Δρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.13630 (8) 0.74106 (4) 0.65560 (3) 0.02137 (13)
S2 −0.23454 (8) 0.66804 (4) 0.47403 (4) 0.02329 (13)
N1 0.1010 (3) 0.56987 (15) 0.60587 (12) 0.0209 (3)
N2 0.2180 (3) 0.55500 (14) 0.69440 (11) 0.0212 (3)
C1 −0.2508 (3) 1.02812 (17) 0.63242 (14) 0.0241 (4)
H1A −0.1133 1.0404 0.5812 0.029*
C2 −0.2838 (3) 1.10363 (18) 0.68983 (15) 0.0270 (4)
H2A −0.1690 1.1664 0.6771 0.032*
C3 −0.4872 (3) 1.08611 (18) 0.76620 (15) 0.0265 (4)
H3A −0.5087 1.1364 0.8054 0.032*
C4 −0.6584 (3) 0.99380 (18) 0.78414 (15) 0.0261 (4)
H4A −0.7964 0.9824 0.8350 0.031*
C5 −0.6253 (3) 0.91803 (17) 0.72668 (15) 0.0230 (4)
H5A −0.7413 0.8558 0.7393 0.028*
C6 −0.4207 (3) 0.93393 (16) 0.65043 (14) 0.0203 (4)
C7 −0.3781 (3) 0.84724 (17) 0.59218 (14) 0.0222 (4)
H7A −0.3250 0.8938 0.5164 0.027*
H7B −0.5287 0.8014 0.5993 0.027*
C8 −0.0802 (3) 0.65301 (16) 0.57678 (14) 0.0199 (4)
C9 0.3953 (3) 0.47537 (16) 0.71089 (14) 0.0205 (4)
H9A 0.4371 0.4369 0.6628 0.025*
C10 0.5303 (3) 0.44442 (16) 0.80163 (14) 0.0207 (4)
H10A 0.4896 0.4829 0.8497 0.025*
C11 0.7138 (3) 0.36108 (16) 0.81818 (14) 0.0209 (4)
H11A 0.7506 0.3277 0.7662 0.025*
C12 0.8636 (3) 0.31572 (16) 0.90742 (14) 0.0202 (4)
C13 0.8492 (3) 0.36609 (17) 0.98578 (15) 0.0254 (4)
H13A 0.7375 0.4298 0.9830 0.030*
C14 0.9991 (4) 0.32206 (18) 1.06702 (15) 0.0285 (4)
H14A 0.9889 0.3570 1.1182 0.034*
C15 1.1645 (4) 0.22635 (19) 1.07320 (15) 0.0298 (4)
H15A 1.2654 0.1972 1.1282 0.036*
C16 1.1791 (3) 0.17447 (19) 0.99739 (15) 0.0306 (5)
H16A 1.2890 0.1096 1.0016 0.037*
C17 1.0301 (3) 0.21890 (18) 0.91488 (15) 0.0257 (4)
H17A 1.0415 0.1836 0.8639 0.031*
H1N1 0.129 (4) 0.519 (2) 0.5733 (18) 0.038 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0237 (2) 0.0250 (2) 0.0198 (2) 0.00424 (18) −0.00880 (17) −0.01190 (19)
S2 0.0242 (2) 0.0305 (3) 0.0194 (2) 0.00284 (19) −0.00832 (17) −0.0129 (2)
N1 0.0221 (8) 0.0265 (8) 0.0190 (8) 0.0024 (6) −0.0071 (6) −0.0128 (7)
N2 0.0218 (8) 0.0265 (8) 0.0165 (7) −0.0001 (6) −0.0052 (6) −0.0090 (6)
C1 0.0193 (9) 0.0296 (10) 0.0230 (9) 0.0001 (8) 0.0002 (7) −0.0106 (8)
C2 0.0238 (10) 0.0256 (10) 0.0316 (11) −0.0046 (8) −0.0010 (8) −0.0114 (9)
C3 0.0255 (10) 0.0279 (10) 0.0311 (10) 0.0026 (8) −0.0030 (8) −0.0172 (9)
C4 0.0193 (9) 0.0321 (11) 0.0279 (10) −0.0005 (8) 0.0007 (7) −0.0136 (9)
C5 0.0182 (9) 0.0250 (10) 0.0260 (10) −0.0033 (7) −0.0041 (7) −0.0094 (8)
C6 0.0189 (9) 0.0223 (9) 0.0195 (9) 0.0031 (7) −0.0076 (7) −0.0067 (7)
C7 0.0212 (9) 0.0258 (10) 0.0211 (9) 0.0027 (7) −0.0081 (7) −0.0095 (8)
C8 0.0197 (9) 0.0225 (9) 0.0174 (9) −0.0025 (7) −0.0018 (7) −0.0076 (7)
C9 0.0199 (9) 0.0229 (9) 0.0212 (9) −0.0018 (7) −0.0027 (7) −0.0109 (8)
C10 0.0230 (9) 0.0233 (9) 0.0185 (9) −0.0023 (7) −0.0039 (7) −0.0102 (7)
C11 0.0226 (9) 0.0217 (9) 0.0207 (9) −0.0029 (7) −0.0034 (7) −0.0103 (7)
C12 0.0179 (9) 0.0206 (9) 0.0209 (9) −0.0033 (7) −0.0032 (7) −0.0063 (7)
C13 0.0279 (10) 0.0239 (10) 0.0245 (10) 0.0001 (8) −0.0067 (8) −0.0085 (8)
C14 0.0361 (11) 0.0285 (10) 0.0214 (10) −0.0048 (8) −0.0084 (8) −0.0083 (8)
C15 0.0236 (10) 0.0373 (11) 0.0217 (10) −0.0033 (8) −0.0074 (8) −0.0025 (9)
C16 0.0227 (10) 0.0351 (11) 0.0276 (10) 0.0061 (8) −0.0033 (8) −0.0058 (9)
C17 0.0243 (10) 0.0293 (10) 0.0229 (10) 0.0024 (8) −0.0017 (7) −0.0100 (8)

Geometric parameters (Å, °)

S1—C8 1.7466 (17) C7—H7A 0.9700
S1—C7 1.8187 (17) C7—H7B 0.9700
S2—C8 1.6696 (18) C9—C10 1.433 (2)
N1—C8 1.334 (2) C9—H9A 0.9300
N1—N2 1.382 (2) C10—C11 1.337 (2)
N1—H1N1 0.87 (2) C10—H10A 0.9300
N2—C9 1.285 (2) C11—C12 1.460 (2)
C1—C2 1.381 (3) C11—H11A 0.9300
C1—C6 1.390 (3) C12—C17 1.394 (2)
C1—H1A 0.9300 C12—C13 1.399 (3)
C2—C3 1.381 (3) C13—C14 1.378 (3)
C2—H2A 0.9300 C13—H13A 0.9300
C3—C4 1.379 (3) C14—C15 1.384 (3)
C3—H3A 0.9300 C14—H14A 0.9300
C4—C5 1.384 (3) C15—C16 1.380 (3)
C4—H4A 0.9300 C15—H15A 0.9300
C5—C6 1.387 (2) C16—C17 1.387 (3)
C5—H5A 0.9300 C16—H16A 0.9300
C6—C7 1.504 (2) C17—H17A 0.9300
C8—S1—C7 102.56 (8) N1—C8—S1 113.76 (13)
C8—N1—N2 120.49 (15) S2—C8—S1 124.67 (10)
C8—N1—H1N1 118.0 (15) N2—C9—C10 121.56 (16)
N2—N1—H1N1 120.9 (15) N2—C9—H9A 119.2
C9—N2—N1 114.00 (14) C10—C9—H9A 119.2
C2—C1—C6 120.70 (17) C11—C10—C9 121.02 (16)
C2—C1—H1A 119.6 C11—C10—H10A 119.5
C6—C1—H1A 119.6 C9—C10—H10A 119.5
C1—C2—C3 120.11 (18) C10—C11—C12 128.25 (16)
C1—C2—H2A 119.9 C10—C11—H11A 115.9
C3—C2—H2A 119.9 C12—C11—H11A 115.9
C4—C3—C2 119.76 (17) C17—C12—C13 118.27 (16)
C4—C3—H3A 120.1 C17—C12—C11 118.96 (16)
C2—C3—H3A 120.1 C13—C12—C11 122.77 (16)
C3—C4—C5 120.16 (17) C14—C13—C12 120.56 (17)
C3—C4—H4A 119.9 C14—C13—H13A 119.7
C5—C4—H4A 119.9 C12—C13—H13A 119.7
C4—C5—C6 120.65 (17) C13—C14—C15 120.60 (18)
C4—C5—H5A 119.7 C13—C14—H14A 119.7
C6—C5—H5A 119.7 C15—C14—H14A 119.7
C5—C6—C1 118.61 (16) C16—C15—C14 119.64 (17)
C5—C6—C7 120.57 (17) C16—C15—H15A 120.2
C1—C6—C7 120.76 (16) C14—C15—H15A 120.2
C6—C7—S1 105.49 (12) C15—C16—C17 120.11 (18)
C6—C7—H7A 110.6 C15—C16—H16A 119.9
S1—C7—H7A 110.6 C17—C16—H16A 119.9
C6—C7—H7B 110.6 C16—C17—C12 120.81 (18)
S1—C7—H7B 110.6 C16—C17—H17A 119.6
H7A—C7—H7B 108.8 C12—C17—H17A 119.6
N1—C8—S2 121.57 (13)
C8—N1—N2—C9 −177.45 (16) C7—S1—C8—S2 −2.52 (14)
C6—C1—C2—C3 0.1 (3) N1—N2—C9—C10 −177.41 (16)
C1—C2—C3—C4 −0.6 (3) N2—C9—C10—C11 179.74 (17)
C2—C3—C4—C5 0.7 (3) C9—C10—C11—C12 −177.74 (17)
C3—C4—C5—C6 −0.1 (3) C10—C11—C12—C17 173.65 (18)
C4—C5—C6—C1 −0.5 (3) C10—C11—C12—C13 −6.9 (3)
C4—C5—C6—C7 176.79 (16) C17—C12—C13—C14 1.0 (3)
C2—C1—C6—C5 0.5 (3) C11—C12—C13—C14 −178.40 (17)
C2—C1—C6—C7 −176.74 (17) C12—C13—C14—C15 −0.7 (3)
C5—C6—C7—S1 −102.64 (16) C13—C14—C15—C16 −0.1 (3)
C1—C6—C7—S1 74.54 (18) C14—C15—C16—C17 0.6 (3)
C8—S1—C7—C6 −175.27 (12) C15—C16—C17—C12 −0.2 (3)
N2—N1—C8—S2 −176.88 (13) C13—C12—C17—C16 −0.6 (3)
N2—N1—C8—S1 3.0 (2) C11—C12—C17—C16 178.89 (17)
C7—S1—C8—N1 177.58 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···S2i 0.87 (2) 2.53 (2) 3.3714 (19) 165 (2)
C9—H9A···S2i 0.93 2.93 3.7264 (18) 144
C15—H15A···Cg1ii 0.93 2.83 3.649 (2) 148

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2494).

References

  1. Ali, M. A., Baker, H. J. H. A., Mirza, A. H., Smith, S. J., Gahan, L. R. & Bernhardt, P. V. (2008). Polyhedron 27, 71–79.
  2. Ali, M. A., Mieza, A. H., Butcher, R. J, Tarafder, M. T. H. & Ali, Manaf A. (2001). Inorg. Chim. Acta, 320, 1–6.
  3. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali, Manaf, A. (2002). J. Inorg. Biochem 92, 141–148. [DOI] [PubMed]
  4. Ali, M. A. & Tarafder, M. T. H. (1977). J. Inorg. Nucl. Chem 39, 1785–1791.
  5. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  6. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Chan, M. H. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.
  8. Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron 23, 1385–1392.
  9. Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, M. A., Yamin, B. M. & Fun, H.-K. (2004). Polyhedron 23, 161–168.
  10. Fun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518–m519. [DOI] [PMC free article] [PubMed]
  11. Shanmuga Sundara Raj, S., Yamin, B. M., Yussof, Y. A., Tarafder, M. T. H., Fun, H.-K. & Grouse, K. A. (2000). Acta Cryst C56, 1236–1237. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Tarafder, M. T. H. & Ali, M. A. (1978). Can. J. Chem 56, 2000–2002.
  15. Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417. [DOI] [PMC free article] [PubMed]
  16. Tarafder, M. T. H., Kasbollah, A., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2001). Polyhedron 20, 2363–2370.
  17. Tarafder, M. T. H., Miah, M. A. J., Bose, R. N. & Ali, M. A. (1981). J. Inorg. Nucl. Chem 39, 3151–3157.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013354/sj2494sup1.cif

e-64-o1042-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013354/sj2494Isup2.hkl

e-64-o1042-Isup2.hkl (175KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES