Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o987. doi: 10.1107/S160053680801266X

2-Chloro-N-phenyl­acetamide

B Thimme Gowda a,*, Jozef Kožíšek b, Miroslav Tokarčík b, Hartmut Fuess c
PMCID: PMC2961479  PMID: 21202713

Abstract

In the title compound, C8H8ClNO, the conformations of the N—H and C=O bonds are anti to each other, but the C—Cl and C=O bonds in the side chain are syn. The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running in the [101] direction.

Related literature

For the synthesis, see: Gowda et al. (2003). For related structures, see: Gowda et al. (2007, 2008).graphic file with name e-64-0o987-scheme1.jpg

Experimental

Crystal data

  • C8H8ClNO

  • M r = 169.6

  • Monoclinic, Inline graphic

  • a = 5.0623 (15) Å

  • b = 18.361 (6) Å

  • c = 9.115 (2) Å

  • β = 102.13 (3)°

  • V = 828.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 297 (2) K

  • 0.41 × 0.24 × 0.17 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] T min = 0.905, T max = 0.938

  • 2388 measured reflections

  • 1067 independent reflections

  • 385 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.086

  • S = 0.96

  • 1067 reflections

  • 106 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.1 e Å−3

  • Δρmin = −0.11 e Å−3

  • Absolute structure: Flack (1983), 254 Friedel pairs

  • Flack parameter: 0.04 (11)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801266X/hb2728sup1.cif

e-64-0o987-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801266X/hb2728Isup2.hkl

e-64-0o987-Isup2.hkl (51.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.05 2.848 (5) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for the resumption of his research fellowship. JK and MT thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support for the purchase of the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of the title compoud, (I), 2-chloro-N-(phenyl)-acetamide (NPCA) has been determined, as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007; 2008). The conformations of the N—H and C=O bonds are anti to each other, but the C—Cl and C=O bonds in the side chain are syn to each other (Fig. 1), similar to that observed in 2-chloro-N-(2-chlorophenyl)-acetamide (Gowda et al., 2007)and 2-chloro-N-(3-methylphenyl)-acetamide (Gowda et al., 2008) with similar bond parameters. Further, the amide group –NHCO– in (I) makes a dihedral angle of 16.0 (8)° with the phenyl ring.

Part of the packing for (I) viewed down the b axis is shown in Fig. 2. Infinite chains running along the base vector [101] are formed by N-H···O hydrogen bonds (Table 1).

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003) and colourless prisms of (I) were recrystallised from an ethanol solution.

Refinement

The H atoms were placed in calculated positions (C-H = 0.93Å, N-H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the packing for (I) viewed down the b axis showing the chains arising from N-H···O hydrogen bonds Symmetry code (i): x - 1/2,-y + 1/2,z - 1/2.

Crystal data

C8H8ClNO F000 = 352
Mr = 169.6 Dx = 1.36 Mg m3
Monoclinic, Cc Mo Kα radiation λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 159 reflections
a = 5.0623 (15) Å θ = 4.9–25.1º
b = 18.361 (6) Å µ = 0.40 mm1
c = 9.115 (2) Å T = 297 (2) K
β = 102.13 (3)º Prism, colorless
V = 828.3 (4) Å3 0.41 × 0.24 × 0.17 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur System diffractometer 1067 independent reflections
Radiation source: Enhance (Mo) X-ray Source 385 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.046
Detector resolution: 10.4340 pixels mm-1 θmax = 26º
T = 297(2) K θmin = 4.3º
ω scans h = −6→6
Absorption correction: analytical[CrysAlis RED (Oxford Diffraction, 2006), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] k = −22→22
Tmin = 0.905, Tmax = 0.938 l = −9→11
2388 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036   [exp(3.70(sinθ/λ)2)]/[σ2(Fo2) + (0.035P)2] where P = 0.33333Fo2 + 0.66667Fc2
wR(F2) = 0.086 (Δ/σ)max < 0.001
S = 0.96 Δρmax = 0.1 e Å3
1067 reflections Δρmin = −0.11 e Å3
106 parameters Extinction correction: none
2 restraints Absolute structure: Flack (1983), 254 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.04 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.3492 (4) 0.15000 (9) 0.9151 (2) 0.1082 (7)
C1 1.0871 (11) 0.1998 (3) 0.8076 (6) 0.0824 (18)
H1A 1.1488 0.2215 0.7237 0.099*
H1B 0.939 0.1671 0.7672 0.099*
C2 0.9849 (11) 0.2595 (3) 0.8961 (6) 0.0629 (17)
N1 0.7939 (8) 0.3008 (2) 0.8086 (4) 0.0642 (13)
H1N 0.7565 0.2897 0.7149 0.077*
O1 1.0653 (7) 0.26846 (19) 1.0314 (3) 0.0833 (13)
C3 0.6481 (10) 0.3597 (3) 0.8507 (6) 0.0517 (13)
C4 0.7302 (11) 0.3975 (3) 0.9862 (6) 0.0670 (17)
H4 0.888 0.3845 1.0536 0.08*
C5 0.5727 (15) 0.4542 (3) 1.0177 (7) 0.082 (2)
H5 0.6222 0.478 1.1094 0.099*
C6 0.3490 (16) 0.4762 (3) 0.9197 (10) 0.0824 (18)
H6 0.2513 0.516 0.9428 0.099*
C7 0.2640 (13) 0.4399 (4) 0.7850 (7) 0.082 (2)
H7 0.1068 0.4538 0.7183 0.099*
C8 0.4153 (10) 0.3835 (4) 0.7525 (6) 0.0676 (16)
H8 0.3614 0.3598 0.6609 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1120 (13) 0.1207 (13) 0.0829 (10) 0.0402 (13) −0.0004 (9) 0.0083 (13)
C1 0.079 (4) 0.091 (4) 0.067 (4) 0.022 (4) −0.006 (3) 0.006 (4)
C2 0.070 (4) 0.071 (4) 0.045 (3) −0.003 (3) 0.005 (3) 0.004 (4)
N1 0.066 (3) 0.084 (3) 0.035 (3) 0.012 (3) −0.006 (2) 0.003 (3)
O1 0.102 (3) 0.097 (3) 0.039 (2) 0.010 (2) −0.013 (2) −0.005 (2)
C3 0.051 (4) 0.062 (4) 0.041 (3) −0.001 (3) 0.008 (3) 0.002 (3)
C4 0.055 (4) 0.084 (4) 0.059 (4) 0.005 (4) 0.007 (3) −0.004 (3)
C5 0.083 (5) 0.097 (5) 0.073 (5) −0.005 (5) 0.029 (4) −0.014 (4)
C6 0.078 (5) 0.071 (4) 0.101 (5) 0.002 (5) 0.027 (4) 0.005 (5)
C7 0.066 (5) 0.094 (5) 0.081 (5) 0.019 (5) 0.005 (4) 0.020 (5)
C8 0.053 (4) 0.090 (5) 0.058 (4) 0.003 (3) 0.006 (3) 0.014 (3)

Geometric parameters (Å, °)

Cl1—C1 1.735 (5) C4—C5 1.378 (7)
C1—C2 1.515 (6) C4—H4 0.93
C1—H1A 0.97 C5—C6 1.349 (8)
C1—H1B 0.97 C5—H5 0.93
C2—O1 1.226 (6) C6—C7 1.384 (9)
C2—N1 1.350 (6) C6—H6 0.93
N1—C3 1.407 (6) C7—C8 1.357 (7)
N1—H1N 0.86 C7—H7 0.93
C3—C8 1.392 (6) C8—H8 0.93
C3—C4 1.401 (7)
C2—C1—Cl1 112.8 (4) C5—C4—C3 118.7 (6)
C2—C1—H1A 109 C5—C4—H4 120.7
Cl1—C1—H1A 109 C3—C4—H4 120.7
C2—C1—H1B 109 C6—C5—C4 122.0 (6)
Cl1—C1—H1B 109 C6—C5—H5 119
H1A—C1—H1B 107.8 C4—C5—H5 119
O1—C2—N1 124.3 (6) C5—C6—C7 120.3 (6)
O1—C2—C1 123.7 (6) C5—C6—H6 119.8
N1—C2—C1 112.0 (5) C7—C6—H6 119.8
C2—N1—C3 128.5 (5) C8—C7—C6 118.5 (6)
C2—N1—H1N 115.7 C8—C7—H7 120.8
C3—N1—H1N 115.7 C6—C7—H7 120.8
C8—C3—C4 117.8 (5) C7—C8—C3 122.6 (6)
C8—C3—N1 119.2 (5) C7—C8—H8 118.7
C4—C3—N1 123.0 (5) C3—C8—H8 118.7
Cl1—C1—C2—O1 −4.8 (7) N1—C3—C4—C5 −179.6 (5)
Cl1—C1—C2—N1 175.8 (4) C3—C4—C5—C6 −2.8 (9)
O1—C2—N1—C3 −1.1 (9) C4—C5—C6—C7 2.7 (9)
C1—C2—N1—C3 178.3 (5) C5—C6—C7—C8 −2.0 (9)
C2—N1—C3—C8 −164.2 (5) C6—C7—C8—C3 1.7 (8)
C2—N1—C3—C4 17.8 (8) C4—C3—C8—C7 −1.8 (8)
C8—C3—C4—C5 2.3 (8) N1—C3—C8—C7 −180.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 2.05 2.848 (5) 155

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2728).

References

  1. Brandenburg, K. (2002). DIAMOND Bonn, Germany.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o4611.
  7. Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64, o208. [DOI] [PMC free article] [PubMed]
  8. Gowda, B. T., Usha, K. M. & Jayalakshmi, K. L. (2003). Z. Naturforsch. Teil A, 58, 801–806.
  9. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680801266X/hb2728sup1.cif

e-64-0o987-sup1.cif (14.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801266X/hb2728Isup2.hkl

e-64-0o987-Isup2.hkl (51.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES