Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1025. doi: 10.1107/S1600536808012154

(S)-1-(2-Ammonio-3-methyl­butyl)-1,2-dihydro­pyridin-2-iminium dibromide

Yifeng Wang a, Jixv Zhang a, Hui Chen a, Shuping Luo a,*
PMCID: PMC2961482  PMID: 21202549

Abstract

In the title compound, C10H19N3 2+·2Br, the plane of the three butyl C atoms nearest to the pyridine ring is almost perpendicular to the ring [dihedral angle = 84.80 (2)°]. The N atom of the ammonium group is displaced by 1.150 (8) Å from the plane of these three C atoms. The iminium N atom lies on the opposite side of this plane. The crystal structure is stabilized by hydrogen bonds between the N and Br atoms, as well as by inter­molecular C—H⋯Br inter­actions.

Related literature

For the synthesis of (S)-1-bromo-3-methyl­butan-2-amine hydro­bromide, see: Xu et al. (2006). For related literature, see: Luo et al. (2006).graphic file with name e-64-o1025-scheme1.jpg

Experimental

Crystal data

  • C10H19N3 2+·2Br

  • M r = 341.10

  • Monoclinic, Inline graphic

  • a = 5.9311 (11) Å

  • b = 12.456 (2) Å

  • c = 9.6807 (18) Å

  • β = 99.733 (3)°

  • V = 704.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.73 mm−1

  • T = 293 (2) K

  • 0.45 × 0.34 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.381, T max = 1.000 (expected range = 0.119–0.313)

  • 4117 measured reflections

  • 2307 independent reflections

  • 2054 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.092

  • S = 0.99

  • 2307 reflections

  • 147 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983), 696 Friedel pairs

  • Flack parameter: 0.06 (2)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012154/cs2071sup1.cif

e-64-o1025-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012154/cs2071Isup2.hkl

e-64-o1025-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯Br2 0.84 (7) 2.55 (7) 3.368 (7) 167 (8)
N2—H2A⋯Br1i 0.84 (8) 2.53 (8) 3.357 (6) 168 (10)
N3—H3C⋯Br2ii 0.89 2.50 3.369 (5) 166
N3—H3B⋯Br1 0.89 2.46 3.238 (5) 147
N3—H3A⋯Br2iii 0.89 2.43 3.281 (5) 160
C3—H3⋯Br1iv 0.93 3.02 3.892 (8) 157
C4—H4⋯Br1v 0.93 2.91 3.748 (8) 150
C6—H6A⋯Br1vi 0.97 2.96 3.528 (7) 119
C5—H5⋯Br2ii 0.93 2.83 3.721 (7) 162
C8—H8⋯Br2 0.98 2.93 3.793 (7) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

supplementary crystallographic information

Comment

Ionic liquids, specially functional ionic liquids, have received growing attention recently due to their tuneable features for various chemical tasks. (S. Luo, et al., 2006). The title compound, readily synthesized from commercially available L-valine and 2-aminopyridine, might have potential utilities in some specific chemical tasks, when it is converted into a kind of functional ionic liquid by neutralization with sodium hydroxide. The structure of (S)-1-(2-ammonio-3-methylbutyl)pyridin-2(1H)-iminium dibromide is shown in Fig. 1.

The crystal is built of doubly protonated cations and bromide anions. The protonation of the amines is appropriate like in the scheme, for the C1—N2 bond distance reveals its double bond property. The dihedral angle between the plane of three alkyl carbons C6/C7/C8 and the pyridine ring is 84.80 (2) °, which means the two planes are approximately perpendicular to one another. The atom N3 of the ammonium group bonded to the alkyl chain is displaced from the plane of three carbons C6/C7/C8 by 1.150 (8) Å. The iminium N2 lies on the opposite side of this plane. The crystal structure is stablized by hydrogen-bonds between the atoms N and Br as well as by intermolecular C—H—Br interactions. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups is shown in Fig. 2.

Experimental

The title compound was synthesized by treating 2-aminopyridine (0.94 g,10 mmol) with (S)-1-bromo-3-methylbutan-2-amine hydrobromide (2.47 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 81%). The compound (S)-1-bromo-3-methylbutan-2-amine hydrobromide was obtained from commercially available L-valine by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp), C—H = 0.93 Å (sp2), C—H = 0.96 Å(sp3) and refined using a riding model, with Uiso(H)=1.2eq(C). N-bound H atoms were located in a difference map and refined with an N—H distance restraint of 0.86 (3) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups.

Crystal data

C10H19N32+·2Br F000 = 340
Mr = 341.10 Dx = 1.607 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
a = 5.9311 (11) Å Cell parameters from 1818 reflections
b = 12.456 (2) Å θ = 5.4–53.4º
c = 9.6807 (18) Å µ = 5.73 mm1
β = 99.733 (3)º T = 293 (2) K
V = 704.9 (2) Å3 Prismatic, colorless
Z = 2 0.45 × 0.34 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer 2307 independent reflections
Radiation source: fine-focus sealed tube 2054 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.038
T = 293(2) K θmax = 27.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.381, Tmax = 1.000 k = −12→15
4117 measured reflections l = −12→12

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041   w = 1/[σ2(Fo2) + (0.0533P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092 (Δ/σ)max < 0.001
S = 0.99 Δρmax = 0.91 e Å3
2307 reflections Δρmin = −0.71 e Å3
147 parameters Extinction correction: none
3 restraints Absolute structure: Flack (1983), 696 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.06 (2)
Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.02019 (11) 0.21057 (4) 0.84434 (6) 0.03666 (18)
Br2 0.61945 (10) 0.78903 (5) 0.54550 (7) 0.03742 (19)
N1 0.7631 (8) 0.4733 (4) 0.2958 (5) 0.0269 (11)
N2 0.4665 (11) 0.5923 (5) 0.3096 (7) 0.0398 (14)
N3 0.9054 (9) 0.3672 (4) 0.5746 (5) 0.0291 (11)
H3A 0.7799 0.3302 0.5406 0.044*
H3B 0.9481 0.3518 0.6651 0.044*
H3C 1.0172 0.3496 0.5280 0.044*
C1 0.5506 (11) 0.5110 (5) 0.2454 (6) 0.0295 (14)
C2 0.4223 (13) 0.4609 (6) 0.1291 (7) 0.0404 (17)
H2 0.2766 0.4863 0.0937 0.048*
C3 0.5050 (15) 0.3772 (7) 0.0677 (7) 0.052 (2)
H3 0.4149 0.3427 −0.0072 0.062*
C4 0.7331 (15) 0.3408 (7) 0.1176 (8) 0.052 (2)
H4 0.7975 0.2856 0.0725 0.062*
C5 0.8497 (13) 0.3880 (6) 0.2301 (7) 0.0378 (16)
H5 0.9953 0.3628 0.2661 0.045*
C6 0.9101 (11) 0.5224 (6) 0.4176 (7) 0.0314 (14)
H6A 0.8922 0.5998 0.4119 0.038*
H6B 1.0686 0.5060 0.4131 0.038*
C7 0.8569 (10) 0.4843 (5) 0.5581 (6) 0.0274 (13)
H7 0.6928 0.4945 0.5567 0.033*
C8 0.9855 (11) 0.5495 (6) 0.6818 (7) 0.0369 (16)
H8 0.9549 0.6256 0.6605 0.044*
C9 0.8975 (15) 0.5251 (8) 0.8154 (7) 0.057 (2)
H9A 0.9414 0.4535 0.8456 0.086*
H9B 0.7338 0.5309 0.7994 0.086*
H9C 0.9614 0.5753 0.8867 0.086*
C10 1.2447 (12) 0.5333 (8) 0.6994 (8) 0.057 (2)
H10A 1.3194 0.5787 0.7734 0.086*
H10B 1.2962 0.5514 0.6135 0.086*
H10C 1.2809 0.4596 0.7224 0.086*
H2A 0.355 (12) 0.623 (8) 0.260 (9) 0.09 (4)*
H2B 0.525 (13) 0.636 (6) 0.371 (7) 0.06 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0508 (4) 0.0348 (4) 0.0231 (3) −0.0033 (3) 0.0026 (3) −0.0009 (3)
Br2 0.0309 (3) 0.0355 (4) 0.0448 (4) 0.0023 (3) 0.0033 (3) −0.0065 (3)
N1 0.033 (3) 0.025 (3) 0.024 (3) 0.001 (2) 0.007 (2) 0.004 (2)
N2 0.040 (4) 0.035 (4) 0.041 (4) 0.006 (3) −0.002 (3) −0.003 (3)
N3 0.032 (3) 0.029 (3) 0.026 (3) −0.004 (2) 0.004 (2) 0.003 (2)
C1 0.041 (4) 0.028 (4) 0.018 (3) −0.001 (3) 0.002 (3) 0.006 (3)
C2 0.042 (4) 0.051 (5) 0.025 (3) −0.004 (3) −0.005 (3) 0.006 (3)
C3 0.074 (5) 0.054 (5) 0.025 (4) −0.011 (4) −0.002 (4) −0.012 (4)
C4 0.077 (6) 0.049 (5) 0.032 (4) 0.006 (4) 0.014 (4) −0.010 (3)
C5 0.051 (4) 0.038 (4) 0.026 (4) 0.009 (3) 0.012 (3) 0.003 (3)
C6 0.031 (3) 0.032 (4) 0.028 (3) −0.003 (3) −0.004 (3) 0.001 (3)
C7 0.021 (3) 0.030 (3) 0.029 (3) 0.001 (2) −0.001 (2) 0.003 (3)
C8 0.046 (4) 0.030 (4) 0.031 (4) 0.002 (3) −0.004 (3) −0.006 (3)
C9 0.066 (5) 0.077 (6) 0.025 (4) 0.014 (5) −0.003 (4) −0.015 (4)
C10 0.035 (4) 0.088 (7) 0.043 (5) −0.016 (4) −0.008 (3) −0.014 (5)

Geometric parameters (Å, °)

Br1—H3B 2.4578 C4—C5 1.325 (10)
Br2—H2B 2.55 (7) C4—H4 0.9300
N1—C1 1.356 (8) C5—H5 0.9300
N1—C5 1.380 (8) C6—C7 1.523 (9)
N1—C6 1.476 (8) C6—H6A 0.9700
N2—C1 1.329 (9) C6—H6B 0.9700
N2—H2A 0.84 (8) C7—C8 1.538 (9)
N2—H2B 0.84 (7) C7—H7 0.9800
N3—C7 1.490 (8) C8—C9 1.506 (11)
N3—H3A 0.8900 C8—C10 1.531 (10)
N3—H3B 0.8900 C8—H8 0.9800
N3—H3C 0.8900 C9—H9A 0.9600
C1—C2 1.396 (9) C9—H9B 0.9600
C2—C3 1.334 (11) C9—H9C 0.9600
C2—H2 0.9300 C10—H10A 0.9600
C3—C4 1.431 (11) C10—H10B 0.9600
C3—H3 0.9300 C10—H10C 0.9600
C1—N1—C5 119.8 (6) C7—C6—H6A 108.8
C1—N1—C6 122.1 (5) N1—C6—H6B 108.8
C5—N1—C6 118.2 (5) C7—C6—H6B 108.8
C1—N2—H2A 114 (7) H6A—C6—H6B 107.7
C1—N2—H2B 133 (6) N3—C7—C6 109.6 (5)
H2A—N2—H2B 107 (9) N3—C7—C8 111.9 (5)
C7—N3—H3A 109.5 C6—C7—C8 112.3 (6)
C7—N3—H3B 109.5 N3—C7—H7 107.6
H3A—N3—H3B 109.5 C6—C7—H7 107.6
C7—N3—H3C 109.5 C8—C7—H7 107.6
H3A—N3—H3C 109.5 C9—C8—C10 111.4 (6)
H3B—N3—H3C 109.5 C9—C8—C7 111.3 (6)
N2—C1—N1 119.7 (6) C10—C8—C7 111.9 (6)
N2—C1—C2 121.4 (7) C9—C8—H8 107.3
N1—C1—C2 118.8 (7) C10—C8—H8 107.3
C3—C2—C1 121.2 (7) C7—C8—H8 107.3
C3—C2—H2 119.4 C8—C9—H9A 109.5
C1—C2—H2 119.4 C8—C9—H9B 109.5
C2—C3—C4 119.7 (7) H9A—C9—H9B 109.5
C2—C3—H3 120.2 C8—C9—H9C 109.5
C4—C3—H3 120.2 H9A—C9—H9C 109.5
C5—C4—C3 117.9 (7) H9B—C9—H9C 109.5
C5—C4—H4 121.0 C8—C10—H10A 109.5
C3—C4—H4 121.0 C8—C10—H10B 109.5
C4—C5—N1 122.5 (7) H10A—C10—H10B 109.5
C4—C5—H5 118.7 C8—C10—H10C 109.5
N1—C5—H5 118.7 H10A—C10—H10C 109.5
N1—C6—C7 113.7 (5) H10B—C10—H10C 109.5
N1—C6—H6A 108.8
C5—N1—C1—N2 179.3 (6) C6—N1—C5—C4 −178.0 (7)
C6—N1—C1—N2 −2.4 (9) C1—N1—C6—C7 82.3 (7)
C5—N1—C1—C2 1.2 (8) C5—N1—C6—C7 −99.4 (7)
C6—N1—C1—C2 179.5 (6) N1—C6—C7—N3 64.0 (7)
N2—C1—C2—C3 −177.9 (7) N1—C6—C7—C8 −170.9 (5)
N1—C1—C2—C3 0.2 (10) N3—C7—C8—C9 −67.1 (7)
C1—C2—C3—C4 −2.8 (11) C6—C7—C8—C9 169.2 (6)
C2—C3—C4—C5 4.2 (11) N3—C7—C8—C10 58.3 (8)
C3—C4—C5—N1 −3.0 (11) C6—C7—C8—C10 −65.5 (8)
C1—N1—C5—C4 0.3 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···Br2 0.84 (7) 2.55 (7) 3.368 (7) 167 (8)
N2—H2A···Br1i 0.84 (8) 2.53 (8) 3.357 (6) 168 (10)
N3—H3C···Br2ii 0.89 2.50 3.369 (5) 166
N3—H3B···Br1 0.89 2.46 3.238 (5) 147
N3—H3A···Br2iii 0.89 2.43 3.281 (5) 160
C3—H3···Br1iv 0.93 3.02 3.892 (8) 157
C4—H4···Br1v 0.93 2.91 3.748 (8) 150
C6—H6A···Br1vi 0.97 2.96 3.528 (7) 119
C5—H5···Br2ii 0.93 2.83 3.721 (7) 162
C8—H8···Br2 0.98 2.93 3.793 (7) 147

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) −x+2, y−1/2, −z+1; (iii) −x+1, y−1/2, −z+1; (iv) x−1, y, z−1; (v) x, y, z−1; (vi) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2071).

References

  1. Bruker (2000). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Luo, S., Mi, X., Zhang, L., Liu, S., Xu, H. & Cheng, J. (2006). Angew. Chem. Int. Ed.45, 3093–3097. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Xu, D. Q., Luo, S. P., Yue, H. D., Wang, L. P., Liu, Y. K. & Xu, Z. Y. (2006). Synlett, 16, 2569–2572.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012154/cs2071sup1.cif

e-64-o1025-sup1.cif (16.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012154/cs2071Isup2.hkl

e-64-o1025-Isup2.hkl (113.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES