Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o995. doi: 10.1107/S1600536808011914

Methyl 4,6-dichloro­pyridine-3-carboxyl­ate

Yi Ma a,*, Jun Liu b
PMCID: PMC2961487  PMID: 21202720

Abstract

The title compound, C7H5Cl2NO2, crystallizes with two independent mol­ecules in the asymmetric unit. The bond lengths and angles in both mol­ecules are within normal ranges. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the [010] plane.

Related literature

For details of the biological activity of the title compound, see: Wallace et al. (2006); Bondinell et al. (2002). For a related structure, see: McArdle et al. (1982).graphic file with name e-64-0o995-scheme1.jpg

Experimental

Crystal data

  • C7H5Cl2NO2

  • M r = 206.02

  • Monoclinic, Inline graphic

  • a = 8.033 (4) Å

  • b = 18.974 (9) Å

  • c = 11.240 (6) Å

  • β = 95.224 (8)°

  • V = 1705.9 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 (2) K

  • 0.45 × 0.19 × 0.06 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.739, T max = 0.958

  • 8532 measured reflections

  • 3012 independent reflections

  • 2289 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.135

  • S = 1.08

  • 3012 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011914/hg2396sup1.cif

e-64-0o995-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011914/hg2396Isup2.hkl

e-64-0o995-Isup2.hkl (147.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O3i 0.93 2.41 3.309 (4) 162
C11—H11A⋯O2ii 0.93 2.60 3.513 (4) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Methyl 4,6-dichloropyridine-3-carboxylate is a useful intermediate for the synthesis of different kinase inhibitors (Wallace et al., 2006; Bondinell et al., 2002). In this paper, we report the crystal structure of the title compound (I).

Compound (I) crystallizes with two independent molecules in the asymmetric unit (Fig. 1), all bond lengths and angles are normal and in a good agreement with those reported previously (McArdle et al., 1982). The dihedral angles between the planes of the methoxycarbonyl group (C1/C2/O1/O2; C8/C9/O3/O4) and pyridine rings in the two independent molecules are 10.9 (2) and 8.1 (4)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds link the molecules into layers parallel to the b axis.

Experimental

Methyl 4, 6-dichloropyridine-3-carboxylate was synthesized from Methyl 4, 6-dihydroxypyridine-3-carboxylate via chlorination with POCl3. The desired compound was obtained as a low melting yellow solid in 89% yield. Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in a hexane/dichloromethane mixture (1: 4 v/v) at room temperature over a period of one week.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C7H5Cl2NO2 F000 = 832
Mr = 206.02 Dx = 1.604 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1274 reflections
a = 8.033 (4) Å θ = 2.8–27.9º
b = 18.974 (9) Å µ = 0.72 mm1
c = 11.240 (6) Å T = 298 (2) K
β = 95.224 (8)º Block, colorless
V = 1705.9 (15) Å3 0.45 × 0.19 × 0.06 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 3012 independent reflections
Radiation source: fine-focus sealed tube 2289 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.035
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.739, Tmax = 0.958 k = −16→22
8532 measured reflections l = −12→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.135   w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3441P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
3012 reflections Δρmax = 0.25 e Å3
217 parameters Δρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.31475 (11) 0.33695 (5) 0.64891 (7) 0.0715 (3)
Cl4 0.81189 (12) 0.14450 (4) 1.15267 (7) 0.0730 (3)
Cl3 0.49419 (14) 0.01243 (5) 0.78099 (8) 0.0883 (4)
Cl2 0.16454 (16) 0.07877 (5) 0.49234 (11) 0.1033 (4)
O4 0.0012 (3) 0.39718 (12) 0.3185 (2) 0.0810 (7)
O1 0.6147 (3) 0.33347 (11) 0.9518 (2) 0.0761 (7)
C3 0.6515 (3) 0.21244 (15) 0.9614 (2) 0.0494 (7)
C4 0.5571 (4) 0.20765 (17) 0.8514 (3) 0.0629 (8)
H4A 0.5253 0.2497 0.8133 0.075*
O2 0.7987 (3) 0.29383 (12) 1.0946 (2) 0.0859 (8)
C6 0.6496 (4) 0.08658 (16) 0.9608 (3) 0.0586 (8)
H6A 0.6799 0.0434 0.9955 0.070*
N1 0.5088 (4) 0.14837 (15) 0.7965 (2) 0.0676 (7)
C10 0.1250 (3) 0.30967 (15) 0.4395 (2) 0.0496 (7)
C11 0.0479 (4) 0.25996 (16) 0.3617 (3) 0.0570 (8)
H11A −0.0152 0.2765 0.2940 0.068*
C13 0.2303 (4) 0.21170 (16) 0.5586 (3) 0.0585 (8)
H13A 0.2924 0.1930 0.6251 0.070*
O3 0.1841 (4) 0.43167 (13) 0.4631 (2) 0.1010 (10)
C5 0.5558 (4) 0.09031 (17) 0.8522 (3) 0.0603 (8)
C7 0.6965 (4) 0.14869 (15) 1.0159 (2) 0.0504 (7)
C9 0.1096 (4) 0.38562 (17) 0.4109 (3) 0.0574 (8)
C1 0.6574 (6) 0.40446 (18) 0.9884 (4) 0.0940 (13)
H1B 0.5889 0.4371 0.9405 0.141*
H1C 0.7730 0.4131 0.9781 0.141*
H1D 0.6388 0.4105 1.0710 0.141*
N2 0.0578 (3) 0.19055 (14) 0.3773 (2) 0.0640 (7)
C14 0.2165 (4) 0.28322 (15) 0.5410 (2) 0.0505 (7)
C2 0.6989 (4) 0.28237 (16) 1.0116 (3) 0.0552 (7)
C8 −0.0218 (5) 0.46966 (19) 0.2809 (3) 0.0893 (12)
H8A −0.1038 0.4719 0.2133 0.134*
H8B 0.0823 0.4883 0.2591 0.134*
H8C −0.0592 0.4969 0.3453 0.134*
C12 0.1485 (4) 0.16916 (16) 0.4737 (3) 0.0612 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0777 (6) 0.0746 (6) 0.0578 (5) −0.0105 (4) −0.0170 (4) −0.0072 (4)
Cl4 0.0903 (7) 0.0682 (5) 0.0546 (5) 0.0025 (4) −0.0261 (4) 0.0098 (4)
Cl3 0.1127 (9) 0.0703 (6) 0.0774 (6) −0.0146 (5) −0.0161 (5) −0.0120 (4)
Cl2 0.1327 (10) 0.0557 (5) 0.1145 (8) 0.0077 (6) −0.0265 (7) −0.0019 (5)
O4 0.0964 (19) 0.0624 (14) 0.0776 (15) −0.0033 (13) −0.0278 (14) 0.0115 (12)
O1 0.0920 (18) 0.0560 (13) 0.0748 (15) 0.0027 (12) −0.0222 (12) 0.0056 (11)
C3 0.0457 (17) 0.0590 (18) 0.0425 (15) 0.0017 (13) −0.0020 (12) 0.0062 (13)
C4 0.072 (2) 0.0584 (19) 0.0548 (18) −0.0003 (16) −0.0144 (15) 0.0074 (15)
O2 0.107 (2) 0.0698 (16) 0.0729 (15) −0.0033 (14) −0.0369 (14) −0.0034 (12)
C6 0.064 (2) 0.0565 (18) 0.0530 (18) 0.0022 (15) −0.0044 (15) 0.0079 (14)
N1 0.076 (2) 0.0683 (18) 0.0538 (15) −0.0015 (14) −0.0175 (13) 0.0034 (13)
C10 0.0448 (17) 0.0594 (18) 0.0444 (15) −0.0022 (14) 0.0035 (12) −0.0019 (13)
C11 0.059 (2) 0.064 (2) 0.0466 (16) −0.0005 (15) −0.0042 (14) −0.0028 (14)
C13 0.0565 (19) 0.066 (2) 0.0509 (17) 0.0018 (15) −0.0056 (14) 0.0038 (14)
O3 0.136 (3) 0.0614 (16) 0.0958 (19) −0.0204 (15) −0.0430 (18) 0.0030 (13)
C5 0.064 (2) 0.063 (2) 0.0528 (17) −0.0050 (16) −0.0029 (15) −0.0045 (15)
C7 0.0465 (17) 0.0616 (18) 0.0418 (15) 0.0028 (14) −0.0031 (12) 0.0062 (13)
C9 0.058 (2) 0.064 (2) 0.0501 (17) −0.0045 (16) −0.0014 (15) 0.0015 (15)
C1 0.133 (4) 0.053 (2) 0.090 (3) 0.003 (2) −0.020 (2) −0.0003 (18)
N2 0.0729 (19) 0.0568 (16) 0.0602 (16) −0.0026 (13) −0.0062 (13) −0.0087 (13)
C14 0.0462 (17) 0.0586 (18) 0.0464 (16) −0.0040 (13) 0.0034 (13) −0.0036 (13)
C2 0.061 (2) 0.0597 (18) 0.0445 (16) 0.0022 (15) 0.0002 (14) 0.0054 (14)
C8 0.105 (3) 0.068 (2) 0.090 (3) 0.002 (2) −0.016 (2) 0.0210 (19)
C12 0.064 (2) 0.0546 (18) 0.064 (2) 0.0040 (15) −0.0002 (16) −0.0012 (15)

Geometric parameters (Å, °)

Cl1—C14 1.720 (3) N1—C5 1.306 (4)
Cl4—C7 1.723 (3) C10—C11 1.392 (4)
Cl3—C5 1.731 (3) C10—C14 1.393 (4)
Cl2—C12 1.731 (3) C10—C9 1.479 (4)
O4—C9 1.313 (4) C11—N2 1.330 (4)
O4—C8 1.446 (4) C11—H11A 0.9300
O1—C2 1.329 (4) C13—C12 1.371 (4)
O1—C1 1.441 (4) C13—C14 1.374 (4)
C3—C7 1.389 (4) C13—H13A 0.9300
C3—C4 1.393 (4) O3—C9 1.184 (4)
C3—C2 1.478 (4) C1—H1B 0.9600
C4—N1 1.324 (4) C1—H1C 0.9600
C4—H4A 0.9300 C1—H1D 0.9600
O2—C2 1.194 (4) N2—C12 1.314 (4)
C6—C7 1.368 (4) C8—H8A 0.9600
C6—C5 1.376 (4) C8—H8B 0.9600
C6—H6A 0.9300 C8—H8C 0.9600
C9—O4—C8 116.6 (3) C3—C7—Cl4 122.1 (2)
C2—O1—C1 116.2 (3) O3—C9—O4 122.6 (3)
C7—C3—C4 115.7 (3) O3—C9—C10 125.7 (3)
C7—C3—C2 124.4 (2) O4—C9—C10 111.8 (3)
C4—C3—C2 119.8 (3) O1—C1—H1B 109.5
N1—C4—C3 125.6 (3) O1—C1—H1C 109.5
N1—C4—H4A 117.2 H1B—C1—H1C 109.5
C3—C4—H4A 117.2 O1—C1—H1D 109.5
C7—C6—C5 117.6 (3) H1B—C1—H1D 109.5
C7—C6—H6A 121.2 H1C—C1—H1D 109.5
C5—C6—H6A 121.2 C12—N2—C11 115.9 (3)
C5—N1—C4 115.7 (3) C13—C14—C10 120.2 (3)
C11—C10—C14 116.2 (3) C13—C14—Cl1 117.2 (2)
C11—C10—C9 120.0 (3) C10—C14—Cl1 122.5 (2)
C14—C10—C9 123.8 (3) O2—C2—O1 122.5 (3)
N2—C11—C10 124.8 (3) O2—C2—C3 126.4 (3)
N2—C11—H11A 117.6 O1—C2—C3 111.2 (3)
C10—C11—H11A 117.6 O4—C8—H8A 109.5
C12—C13—C14 117.0 (3) O4—C8—H8B 109.5
C12—C13—H13A 121.5 H8A—C8—H8B 109.5
C14—C13—H13A 121.5 O4—C8—H8C 109.5
N1—C5—C6 125.4 (3) H8A—C8—H8C 109.5
N1—C5—Cl3 116.1 (2) H8B—C8—H8C 109.5
C6—C5—Cl3 118.5 (2) N2—C12—C13 125.9 (3)
C6—C7—C3 120.0 (3) N2—C12—Cl2 115.8 (2)
C6—C7—Cl4 117.9 (2) C13—C12—Cl2 118.2 (2)
C7—C3—C4—N1 −0.2 (5) C11—C10—C9—O4 8.7 (4)
C2—C3—C4—N1 179.1 (3) C14—C10—C9—O4 −172.4 (3)
C3—C4—N1—C5 −0.1 (5) C10—C11—N2—C12 −0.3 (5)
C14—C10—C11—N2 −0.9 (4) C12—C13—C14—C10 −1.1 (4)
C9—C10—C11—N2 178.0 (3) C12—C13—C14—Cl1 178.5 (2)
C4—N1—C5—C6 −0.1 (5) C11—C10—C14—C13 1.6 (4)
C4—N1—C5—Cl3 −179.7 (2) C9—C10—C14—C13 −177.3 (3)
C7—C6—C5—N1 0.6 (5) C11—C10—C14—Cl1 −178.0 (2)
C7—C6—C5—Cl3 −179.8 (2) C9—C10—C14—Cl1 3.1 (4)
C5—C6—C7—C3 −0.9 (5) C1—O1—C2—O2 3.5 (5)
C5—C6—C7—Cl4 179.3 (2) C1—O1—C2—C3 −176.6 (3)
C4—C3—C7—C6 0.7 (4) C7—C3—C2—O2 11.1 (5)
C2—C3—C7—C6 −178.5 (3) C4—C3—C2—O2 −168.0 (3)
C4—C3—C7—Cl4 −179.5 (2) C7—C3—C2—O1 −168.8 (3)
C2—C3—C7—Cl4 1.3 (4) C4—C3—C2—O1 12.0 (4)
C8—O4—C9—O3 1.1 (5) C11—N2—C12—C13 0.9 (5)
C8—O4—C9—C10 −178.8 (3) C11—N2—C12—Cl2 −178.8 (2)
C11—C10—C9—O3 −171.2 (3) C14—C13—C12—N2 −0.2 (5)
C14—C10—C9—O3 7.7 (5) C14—C13—C12—Cl2 179.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O3i 0.93 2.41 3.309 (4) 162
C11—H11A···O2ii 0.93 2.60 3.513 (4) 168

Symmetry codes: (i) −x+1, y−1/2, −z+3/2; (ii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2396).

References

  1. Bondinell, W. E., Holt, D. A., Lago, M. A., Neeb, M. J. & Semones, M. A. (2002). World Wide Patent. WO 02 076 463.
  2. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. McArdle, J. V., de Laubenfels, E., Shorter, A. L. & Ammon, H. L. (1982). Polyhedron, 1, 471–474.
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wallace, E., Hurley, B., Yang, H. W., Lyssikatos, J. & Blake, J. (2006). United States Patent US 7 144 907.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808011914/hg2396sup1.cif

e-64-0o995-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808011914/hg2396Isup2.hkl

e-64-0o995-Isup2.hkl (147.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES