Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 7;64(Pt 6):o1001–o1002. doi: 10.1107/S1600536808012713

4-(4-Bromo­benzyl­ideneamino)-1-(diphenyl­amino­meth­yl)-3-[1-(4-isobutyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, K V Sujith b, P S Patil c, B Kalluraya b, S M Dharmaprakash c
PMCID: PMC2961489  PMID: 21202529

Abstract

In the title compound, C34H34BrN5S, the two phenyl rings of the diphenyl­amino­methyl group are inclined at an angle of 73.86 (8)° and they form dihedral angles of 74.04 (8) and 48.74 (8)° with the triazole ring. Intra­molecular C—H⋯S hydrogen bonds generate S(6) and S(5) ring motifs. The crystal structure is stabilized by weak C—H⋯π inter­actions.

Related literature

For related literature, see: Dave et al. (2007); Kalluraya et al. (2003, 2004, 2007); Kane et al. (1990). For literature on Mannich bases, see: Kalluraya et al. (2001). For bond-length data, see: Allen et al. (1987). For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-64-o1001-scheme1.jpg

Experimental

Crystal data

  • C34H34BrN5S

  • M r = 624.63

  • Monoclinic, Inline graphic

  • a = 10.9672 (1) Å

  • b = 9.7833 (1) Å

  • c = 28.6210 (3) Å

  • β = 105.966 (1)°

  • V = 2952.44 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.31 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.623, T max = 0.684

  • 55283 measured reflections

  • 13248 independent reflections

  • 7914 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.098

  • S = 1.01

  • 13248 reflections

  • 372 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012713/ci2592sup1.cif

e-64-o1001-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012713/ci2592Isup2.hkl

e-64-o1001-Isup2.hkl (634.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯S1 0.93 2.52 3.217 (2) 132
C22—H22B⋯S1 0.97 2.80 3.232 (2) 108
C6—H6ACg1i 0.93 2.81 3.717 (2) 165
C21—H21CCg2ii 0.96 2.89 3.829 (2) 168

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are the centroids of the C11–C16 and C23–C28 rings, respectively.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Nitrogen-containing heterocyclic molecules constitute the largest portion of chemical entities, which are part of many natural products, fine chemicals, and biologically active pharmaceuticals vital for enhancing the quality of life (Kalluraya et al. 2003, 2007; Kane et al., 1990). Mannich bases are a class of heterocycles, which have attracted significant interest in medicinal chemistry (Kalluraya et al., 2004). Among the Mannich bases, 1,2,4-triazole derivatives have attracted considerable attention because of their wide variety of biological activities, such as antineoplastic, analgesic and antibiotic activity (Dave et al., 2007). Mannich bases are obtained by condensing an amine, formaldehyde and a compound containing active hydrogen atom (Kalluraya et al., 2001). It is interesting to note that the reaction is highly regioselective and furnishes only the N-Mannich base and none of the S-Mannich derivatives, though the intermediate Schiff bases can exist in the thiol-thione tautomeric equilibrium. In view of these impressive array of properties exhibited by Mannich bases, the crystal structure of the title compound is reported here.

Bond lengths and angles in the title compound have normal values (Allen et al., 1987). The triazole ring is planar with a maximium deviation of 0.010 (2) Å for atom C1. The planes through the C4—C9, C11—C16, C23—C28 and C29—C34 rings form dihedral angles of 25.10 (8), 81.35 (8), 74.04 (8) and 48.74 (8)°, respectively, with the the triazole ring. Weak C—H···S hydrogen bonds generating S(6) and S(5) ring motifs (Bernstein et al.,(1995) are observed in the molecular structure.

The crystal packing is stabilized by weak C—H···π interactions involving the C11–C16 (centroid Cg1) and C23–C28 (centroid Cg2) rings (Table 1).

Experimental

The title compound, a Mannich base, was obtained by the aminomethylation of a Schiff base, 4-{[(4-bromophenyl)methylene]amino}-5-[1-(4-isobutylphenyl)ethyl]-3-mercapto- 1,2,4-triazole which was in turn obtained by refluxing 4-amino-3-mercapto-5- [1-(4-isobutylphenyl)ethyl]-1,2,4-triazole (0.01 mol) and 4-bromo benzaldehyde (0.01 mol) in ethanol (30 ml) by adding 2 drops of concentrated sulfuric acid for 3 h. A mixture of the obtained Schiff base (0.01 mol), formaldehyde (40%, 1 ml) and diphenyl amine (0.01 mol) in ethanol (50 ml) was stirred at room temperature for 16 h. The solid product was collected by filtration, washed with ethanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from an acetone-N,N-dimethylformamide (DMF) (1:3) solution by slow evaporation (yield 68%; m.p. 381–382 K). Analysis (%) for C34H34N5BrS found (calculated): C 65.23 (65.38), H 5.33 (5.44), N 11.21 (11.17).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating-group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Crystal data

C34H34BrN5S F000 = 1296
Mr = 624.63 Dx = 1.405 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8665 reflections
a = 10.9672 (1) Å θ = 2.2–29.2º
b = 9.7833 (1) Å µ = 1.50 mm1
c = 28.6210 (3) Å T = 100.0 (1) K
β = 105.966 (1)º Block, colourless
V = 2952.44 (5) Å3 0.35 × 0.31 × 0.27 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 13248 independent reflections
Radiation source: fine-focus sealed tube 7914 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.059
T = 100.0(1) K θmax = 35.4º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −17→17
Tmin = 0.623, Tmax = 0.684 k = −15→15
55283 measured reflections l = −46→46

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.098   w = 1/[σ2(Fo2) + (0.0352P)2 + 0.5449P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
13248 reflections Δρmax = 0.46 e Å3
372 parameters Δρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.543981 (15) −0.004817 (17) −0.133261 (6) 0.02529 (5)
S1 0.15515 (5) −0.27622 (4) 0.091481 (16) 0.02758 (10)
N1 0.11707 (12) −0.00549 (12) 0.06174 (4) 0.0177 (2)
N2 0.01822 (12) 0.07970 (13) 0.11283 (5) 0.0194 (3)
N3 0.05163 (13) −0.05530 (13) 0.12340 (4) 0.0192 (3)
N4 0.05997 (13) −0.03122 (13) 0.20801 (5) 0.0213 (3)
N5 0.16650 (12) 0.00579 (12) 0.02217 (4) 0.0186 (2)
C1 0.11076 (15) −0.11338 (15) 0.09263 (5) 0.0194 (3)
C2 0.05841 (14) 0.10666 (15) 0.07525 (5) 0.0176 (3)
C3 0.25133 (14) −0.08055 (15) 0.01851 (5) 0.0191 (3)
H3A 0.2737 −0.1521 0.0406 0.023*
C4 0.31254 (14) −0.06601 (15) −0.02038 (5) 0.0170 (3)
C5 0.41316 (15) −0.15262 (15) −0.02088 (5) 0.0193 (3)
H5A 0.4342 −0.2231 0.0017 0.023*
C6 0.48243 (15) −0.13606 (15) −0.05424 (5) 0.0194 (3)
H6A 0.5502 −0.1935 −0.0539 0.023*
C7 0.44857 (15) −0.03203 (15) −0.08809 (5) 0.0194 (3)
C8 0.34706 (15) 0.05398 (16) −0.08930 (5) 0.0202 (3)
H8A 0.3250 0.1224 −0.1127 0.024*
C9 0.27910 (15) 0.03763 (15) −0.05571 (5) 0.0195 (3)
H9A 0.2111 0.0951 −0.0564 0.023*
C10 0.04978 (14) 0.24247 (15) 0.05043 (5) 0.0196 (3)
H10A 0.0236 0.2270 0.0152 0.023*
C11 0.17723 (14) 0.31489 (14) 0.06341 (5) 0.0181 (3)
C12 0.21998 (15) 0.37842 (15) 0.02736 (5) 0.0203 (3)
H12A 0.1743 0.3683 −0.0050 0.024*
C13 0.32967 (16) 0.45656 (16) 0.03905 (6) 0.0220 (3)
H13A 0.3565 0.4979 0.0143 0.026*
C14 0.40058 (15) 0.47425 (15) 0.08733 (6) 0.0198 (3)
C15 0.35851 (15) 0.40810 (16) 0.12319 (6) 0.0218 (3)
H15A 0.4047 0.4170 0.1556 0.026*
C16 0.24913 (15) 0.32926 (16) 0.11149 (5) 0.0208 (3)
H16A 0.2235 0.2855 0.1361 0.025*
C17 −0.05057 (16) 0.33197 (16) 0.06350 (6) 0.0258 (3)
H17A −0.1306 0.2851 0.0550 0.039*
H17B −0.0586 0.4165 0.0459 0.039*
H17C −0.0254 0.3504 0.0978 0.039*
C18 0.51856 (15) 0.56133 (16) 0.09975 (6) 0.0228 (3)
H18A 0.5288 0.6009 0.1317 0.027*
H18B 0.5065 0.6360 0.0766 0.027*
C19 0.64115 (15) 0.48568 (15) 0.09976 (5) 0.0193 (3)
H19A 0.6274 0.4395 0.0683 0.023*
C20 0.74986 (16) 0.58645 (16) 0.10501 (6) 0.0262 (3)
H20A 0.7281 0.6517 0.0790 0.039*
H20B 0.8250 0.5380 0.1038 0.039*
H20C 0.7650 0.6332 0.1356 0.039*
C21 0.67544 (15) 0.37717 (16) 0.13955 (6) 0.0227 (3)
H21A 0.7493 0.3281 0.1371 0.034*
H21B 0.6059 0.3147 0.1357 0.034*
H21C 0.6927 0.4204 0.1708 0.034*
C22 0.02950 (16) −0.12061 (16) 0.16644 (5) 0.0224 (3)
H22A −0.0588 −0.1475 0.1593 0.027*
H22B 0.0808 −0.2026 0.1740 0.027*
C23 0.18209 (15) 0.02413 (15) 0.22580 (5) 0.0196 (3)
C24 0.29008 (16) −0.04544 (17) 0.22172 (6) 0.0227 (3)
H24A 0.2821 −0.1297 0.2061 0.027*
C25 0.40981 (16) 0.01206 (17) 0.24111 (6) 0.0258 (3)
H25A 0.4816 −0.0355 0.2391 0.031*
C26 0.42321 (16) 0.13885 (18) 0.26334 (6) 0.0275 (4)
H26A 0.5032 0.1768 0.2761 0.033*
C27 0.31547 (17) 0.20828 (17) 0.26626 (6) 0.0275 (4)
H27A 0.3236 0.2940 0.2808 0.033*
C28 0.19685 (15) 0.15264 (16) 0.24802 (6) 0.0231 (3)
H28A 0.1258 0.2009 0.2505 0.028*
C29 −0.03703 (14) 0.00563 (15) 0.22995 (5) 0.0183 (3)
C30 −0.14889 (15) 0.06584 (17) 0.20375 (6) 0.0234 (3)
H30A −0.1623 0.0840 0.1708 0.028*
C31 −0.24132 (15) 0.09931 (17) 0.22671 (6) 0.0252 (3)
H31A −0.3170 0.1389 0.2090 0.030*
C32 −0.22099 (15) 0.07391 (16) 0.27591 (6) 0.0238 (3)
H32A −0.2830 0.0962 0.2912 0.029*
C33 −0.10801 (15) 0.01518 (15) 0.30232 (6) 0.0222 (3)
H33A −0.0938 −0.0006 0.3354 0.027*
C34 −0.01663 (15) −0.01996 (15) 0.27969 (6) 0.0207 (3)
H34A 0.0585 −0.0606 0.2974 0.025*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02348 (8) 0.03478 (9) 0.01983 (7) 0.00250 (7) 0.00969 (6) 0.00190 (7)
S1 0.0432 (3) 0.01778 (18) 0.0276 (2) 0.00609 (17) 0.01949 (19) 0.00226 (15)
N1 0.0210 (6) 0.0184 (6) 0.0148 (5) 0.0036 (5) 0.0069 (5) 0.0005 (5)
N2 0.0205 (6) 0.0183 (6) 0.0200 (6) 0.0040 (5) 0.0064 (5) 0.0002 (5)
N3 0.0237 (6) 0.0183 (6) 0.0171 (6) 0.0025 (5) 0.0079 (5) 0.0003 (5)
N4 0.0200 (6) 0.0272 (7) 0.0181 (6) −0.0008 (5) 0.0076 (5) −0.0047 (5)
N5 0.0207 (6) 0.0199 (6) 0.0161 (5) −0.0001 (5) 0.0066 (5) −0.0017 (5)
C1 0.0221 (7) 0.0199 (7) 0.0168 (7) 0.0015 (6) 0.0067 (6) −0.0008 (5)
C2 0.0165 (7) 0.0195 (7) 0.0168 (6) 0.0023 (5) 0.0044 (6) −0.0018 (5)
C3 0.0225 (7) 0.0192 (7) 0.0156 (6) 0.0008 (6) 0.0052 (6) 0.0002 (5)
C4 0.0188 (7) 0.0173 (7) 0.0144 (6) −0.0004 (5) 0.0037 (5) −0.0014 (5)
C5 0.0251 (8) 0.0165 (7) 0.0160 (6) 0.0018 (6) 0.0053 (6) −0.0006 (5)
C6 0.0208 (7) 0.0178 (7) 0.0193 (7) 0.0025 (6) 0.0051 (6) −0.0032 (5)
C7 0.0209 (7) 0.0231 (7) 0.0146 (6) −0.0007 (6) 0.0056 (6) −0.0030 (5)
C8 0.0215 (7) 0.0212 (7) 0.0170 (7) 0.0027 (6) 0.0037 (6) 0.0018 (6)
C9 0.0197 (7) 0.0206 (7) 0.0175 (7) 0.0033 (6) 0.0040 (6) −0.0008 (5)
C10 0.0209 (7) 0.0191 (7) 0.0178 (7) 0.0040 (6) 0.0036 (6) 0.0001 (5)
C11 0.0206 (7) 0.0151 (6) 0.0191 (7) 0.0051 (5) 0.0062 (6) 0.0004 (5)
C12 0.0242 (7) 0.0200 (7) 0.0151 (6) 0.0052 (6) 0.0028 (6) 0.0019 (5)
C13 0.0256 (8) 0.0210 (7) 0.0200 (7) 0.0043 (6) 0.0075 (6) 0.0048 (6)
C14 0.0222 (7) 0.0162 (7) 0.0212 (7) 0.0043 (5) 0.0061 (6) 0.0011 (5)
C15 0.0239 (8) 0.0240 (8) 0.0172 (7) 0.0031 (6) 0.0052 (6) −0.0019 (6)
C16 0.0245 (8) 0.0220 (7) 0.0175 (7) 0.0024 (6) 0.0088 (6) 0.0013 (6)
C17 0.0220 (8) 0.0230 (8) 0.0317 (9) 0.0060 (6) 0.0059 (7) 0.0004 (7)
C18 0.0265 (8) 0.0180 (7) 0.0239 (8) 0.0008 (6) 0.0068 (6) 0.0011 (6)
C19 0.0242 (7) 0.0185 (7) 0.0163 (6) −0.0004 (6) 0.0074 (6) −0.0008 (5)
C20 0.0297 (9) 0.0208 (8) 0.0320 (9) 0.0001 (7) 0.0151 (7) 0.0009 (7)
C21 0.0251 (8) 0.0213 (7) 0.0213 (7) 0.0005 (6) 0.0059 (6) 0.0012 (6)
C22 0.0266 (8) 0.0234 (8) 0.0191 (7) −0.0006 (6) 0.0099 (6) −0.0016 (6)
C23 0.0218 (7) 0.0220 (8) 0.0164 (6) 0.0015 (6) 0.0074 (6) 0.0027 (5)
C24 0.0265 (8) 0.0241 (7) 0.0201 (7) 0.0031 (6) 0.0108 (6) 0.0007 (6)
C25 0.0218 (7) 0.0350 (9) 0.0231 (7) 0.0051 (7) 0.0106 (6) 0.0053 (7)
C26 0.0216 (8) 0.0352 (9) 0.0270 (8) −0.0035 (7) 0.0088 (7) 0.0029 (7)
C27 0.0297 (9) 0.0237 (8) 0.0301 (9) −0.0030 (7) 0.0101 (7) 0.0006 (7)
C28 0.0218 (7) 0.0215 (8) 0.0278 (8) 0.0019 (6) 0.0102 (7) 0.0033 (6)
C29 0.0196 (6) 0.0181 (7) 0.0179 (6) 0.0001 (6) 0.0062 (5) −0.0011 (6)
C30 0.0260 (8) 0.0258 (8) 0.0171 (7) 0.0016 (7) 0.0038 (6) 0.0019 (6)
C31 0.0194 (7) 0.0266 (8) 0.0280 (8) 0.0029 (6) 0.0035 (6) 0.0025 (7)
C32 0.0200 (7) 0.0243 (8) 0.0299 (8) 0.0005 (6) 0.0116 (6) −0.0030 (7)
C33 0.0254 (8) 0.0246 (8) 0.0182 (7) −0.0008 (6) 0.0087 (6) 0.0004 (6)
C34 0.0203 (7) 0.0231 (8) 0.0180 (7) 0.0030 (6) 0.0042 (6) 0.0020 (6)

Geometric parameters (Å, °)

Br1—C7 1.8925 (16) C17—H17A 0.96
S1—C1 1.6688 (15) C17—H17B 0.96
N1—C2 1.3800 (19) C17—H17C 0.96
N1—N5 1.3879 (18) C18—C19 1.535 (2)
N1—C1 1.3907 (19) C18—H18A 0.97
N2—C2 1.2968 (19) C18—H18B 0.97
N2—N3 1.3818 (18) C19—C20 1.522 (2)
N3—C1 1.354 (2) C19—C21 1.526 (2)
N3—C22 1.466 (2) C19—H19A 0.98
N4—C23 1.404 (2) C20—H20A 0.96
N4—C29 1.422 (2) C20—H20B 0.96
N4—C22 1.4399 (19) C20—H20C 0.96
N5—C3 1.2821 (19) C21—H21A 0.96
C2—C10 1.497 (2) C21—H21B 0.96
C3—C4 1.456 (2) C21—H21C 0.96
C3—H3A 0.93 C22—H22A 0.97
C4—C5 1.395 (2) C22—H22B 0.97
C4—C9 1.408 (2) C23—C28 1.398 (2)
C5—C6 1.383 (2) C23—C24 1.398 (2)
C5—H5A 0.93 C24—C25 1.396 (2)
C6—C7 1.384 (2) C24—H24A 0.93
C6—H6A 0.93 C25—C26 1.383 (2)
C7—C8 1.388 (2) C25—H25A 0.93
C8—C9 1.378 (2) C26—C27 1.385 (2)
C8—H8A 0.93 C26—H26A 0.93
C9—H9A 0.93 C27—C28 1.374 (2)
C10—C11 1.519 (2) C27—H27A 0.93
C10—C17 1.531 (2) C28—H28A 0.93
C10—H10A 0.98 C29—C30 1.381 (2)
C11—C12 1.392 (2) C29—C34 1.402 (2)
C11—C16 1.392 (2) C30—C31 1.390 (2)
C12—C13 1.386 (2) C30—H30A 0.93
C12—H12A 0.93 C31—C32 1.386 (2)
C13—C14 1.397 (2) C31—H31A 0.93
C13—H13A 0.93 C32—C33 1.386 (2)
C14—C15 1.395 (2) C32—H32A 0.93
C14—C18 1.508 (2) C33—C34 1.378 (2)
C15—C16 1.387 (2) C33—H33A 0.93
C15—H15A 0.93 C34—H34A 0.93
C16—H16A 0.93
C2—N1—N5 118.83 (12) H17B—C17—H17C 109.5
C2—N1—C1 108.47 (13) C14—C18—C19 114.99 (13)
N5—N1—C1 132.69 (12) C14—C18—H18A 108.5
C2—N2—N3 104.23 (12) C19—C18—H18A 108.5
C1—N3—N2 113.84 (12) C14—C18—H18B 108.5
C1—N3—C22 125.69 (13) C19—C18—H18B 108.5
N2—N3—C22 120.35 (12) H18A—C18—H18B 107.5
C23—N4—C29 119.80 (12) C20—C19—C21 110.56 (13)
C23—N4—C22 121.01 (13) C20—C19—C18 110.48 (12)
C29—N4—C22 119.14 (13) C21—C19—C18 111.82 (13)
C3—N5—N1 118.00 (12) C20—C19—H19A 107.9
N3—C1—N1 102.21 (12) C21—C19—H19A 107.9
N3—C1—S1 127.43 (12) C18—C19—H19A 107.9
N1—C1—S1 130.26 (12) C19—C20—H20A 109.5
N2—C2—N1 111.21 (13) C19—C20—H20B 109.5
N2—C2—C10 125.62 (13) H20A—C20—H20B 109.5
N1—C2—C10 123.10 (13) C19—C20—H20C 109.5
N5—C3—C4 119.71 (13) H20A—C20—H20C 109.5
N5—C3—H3A 120.1 H20B—C20—H20C 109.5
C4—C3—H3A 120.1 C19—C21—H21A 109.5
C5—C4—C9 118.73 (14) C19—C21—H21B 109.5
C5—C4—C3 118.76 (13) H21A—C21—H21B 109.5
C9—C4—C3 122.39 (14) C19—C21—H21C 109.5
C6—C5—C4 121.49 (14) H21A—C21—H21C 109.5
C6—C5—H5A 119.3 H21B—C21—H21C 109.5
C4—C5—H5A 119.3 N4—C22—N3 112.04 (13)
C5—C6—C7 118.48 (14) N4—C22—H22A 109.2
C5—C6—H6A 120.8 N3—C22—H22A 109.2
C7—C6—H6A 120.8 N4—C22—H22B 109.2
C6—C7—C8 121.48 (15) N3—C22—H22B 109.2
C6—C7—Br1 119.31 (12) H22A—C22—H22B 107.9
C8—C7—Br1 119.20 (12) C28—C23—C24 118.75 (15)
C9—C8—C7 119.73 (14) C28—C23—N4 119.42 (14)
C9—C8—H8A 120.1 C24—C23—N4 121.83 (14)
C7—C8—H8A 120.1 C25—C24—C23 119.77 (15)
C8—C9—C4 120.05 (14) C25—C24—H24A 120.1
C8—C9—H9A 120.0 C23—C24—H24A 120.1
C4—C9—H9A 120.0 C26—C25—C24 120.90 (16)
C2—C10—C11 111.34 (12) C26—C25—H25A 119.5
C2—C10—C17 110.33 (13) C24—C25—H25A 119.5
C11—C10—C17 110.39 (12) C25—C26—C27 118.88 (16)
C2—C10—H10A 108.2 C25—C26—H26A 120.6
C11—C10—H10A 108.2 C27—C26—H26A 120.6
C17—C10—H10A 108.2 C28—C27—C26 121.13 (16)
C12—C11—C16 118.23 (14) C28—C27—H27A 119.4
C12—C11—C10 120.12 (13) C26—C27—H27A 119.4
C16—C11—C10 121.44 (14) C27—C28—C23 120.54 (15)
C13—C12—C11 120.94 (14) C27—C28—H28A 119.7
C13—C12—H12A 119.5 C23—C28—H28A 119.7
C11—C12—H12A 119.5 C30—C29—C34 119.83 (14)
C12—C13—C14 121.13 (15) C30—C29—N4 121.92 (14)
C12—C13—H13A 119.4 C34—C29—N4 118.25 (13)
C14—C13—H13A 119.4 C29—C30—C31 119.85 (14)
C15—C14—C13 117.60 (15) C29—C30—H30A 120.1
C15—C14—C18 121.65 (14) C31—C30—H30A 120.1
C13—C14—C18 120.75 (14) C32—C31—C30 120.24 (15)
C16—C15—C14 121.29 (14) C32—C31—H31A 119.9
C16—C15—H15A 119.4 C30—C31—H31A 119.9
C14—C15—H15A 119.4 C31—C32—C33 119.87 (15)
C15—C16—C11 120.77 (15) C31—C32—H32A 120.1
C15—C16—H16A 119.6 C33—C32—H32A 120.1
C11—C16—H16A 119.6 C34—C33—C32 120.24 (15)
C10—C17—H17A 109.5 C34—C33—H33A 119.9
C10—C17—H17B 109.5 C32—C33—H33A 119.9
H17A—C17—H17B 109.5 C33—C34—C29 119.96 (14)
C10—C17—H17C 109.5 C33—C34—H34A 120.0
H17A—C17—H17C 109.5 C29—C34—H34A 120.0
C2—N2—N3—C1 −0.72 (16) C11—C12—C13—C14 −0.1 (2)
C2—N2—N3—C22 175.64 (13) C12—C13—C14—C15 1.3 (2)
C2—N1—N5—C3 159.63 (14) C12—C13—C14—C18 −178.97 (14)
C1—N1—N5—C3 −21.9 (2) C13—C14—C15—C16 −1.0 (2)
N2—N3—C1—N1 1.58 (16) C18—C14—C15—C16 179.34 (14)
C22—N3—C1—N1 −174.54 (13) C14—C15—C16—C11 −0.6 (2)
N2—N3—C1—S1 −175.19 (11) C12—C11—C16—C15 1.8 (2)
C22—N3—C1—S1 8.7 (2) C10—C11—C16—C15 −173.02 (14)
C2—N1—C1—N3 −1.81 (15) C15—C14—C18—C19 91.60 (18)
N5—N1—C1—N3 179.61 (14) C13—C14—C18—C19 −88.07 (18)
C2—N1—C1—S1 174.83 (12) C14—C18—C19—C20 171.34 (13)
N5—N1—C1—S1 −3.7 (3) C14—C18—C19—C21 −65.06 (17)
N3—N2—C2—N1 −0.53 (15) C23—N4—C22—N3 −58.20 (18)
N3—N2—C2—C10 −177.61 (13) C29—N4—C22—N3 119.16 (15)
N5—N1—C2—N2 −179.65 (12) C1—N3—C22—N4 134.71 (15)
C1—N1—C2—N2 1.54 (17) N2—N3—C22—N4 −41.18 (18)
N5—N1—C2—C10 −2.5 (2) C29—N4—C23—C28 −28.3 (2)
C1—N1—C2—C10 178.71 (13) C22—N4—C23—C28 149.07 (15)
N1—N5—C3—C4 −175.35 (12) C29—N4—C23—C24 152.09 (15)
N5—C3—C4—C5 173.71 (14) C22—N4—C23—C24 −30.6 (2)
N5—C3—C4—C9 −2.3 (2) C28—C23—C24—C25 2.1 (2)
C9—C4—C5—C6 2.0 (2) N4—C23—C24—C25 −178.29 (14)
C3—C4—C5—C6 −174.15 (14) C23—C24—C25—C26 −1.6 (2)
C4—C5—C6—C7 −1.0 (2) C24—C25—C26—C27 0.2 (2)
C5—C6—C7—C8 −0.5 (2) C25—C26—C27—C28 0.7 (3)
C5—C6—C7—Br1 178.70 (11) C26—C27—C28—C23 −0.2 (3)
C6—C7—C8—C9 1.0 (2) C24—C23—C28—C27 −1.2 (2)
Br1—C7—C8—C9 −178.16 (11) N4—C23—C28—C27 179.18 (15)
C7—C8—C9—C4 −0.1 (2) C23—N4—C29—C30 121.59 (16)
C5—C4—C9—C8 −1.4 (2) C22—N4—C29—C30 −55.8 (2)
C3—C4—C9—C8 174.57 (14) C23—N4—C29—C34 −58.07 (19)
N2—C2—C10—C11 103.74 (17) C22—N4—C29—C34 124.55 (15)
N1—C2—C10—C11 −73.02 (18) C34—C29—C30—C31 −0.7 (2)
N2—C2—C10—C17 −19.2 (2) N4—C29—C30—C31 179.60 (14)
N1—C2—C10—C17 164.05 (13) C29—C30—C31—C32 0.7 (2)
C2—C10—C11—C12 135.56 (14) C30—C31—C32—C33 0.1 (2)
C17—C10—C11—C12 −101.54 (16) C31—C32—C33—C34 −1.0 (2)
C2—C10—C11—C16 −49.71 (19) C32—C33—C34—C29 1.0 (2)
C17—C10—C11—C16 73.20 (17) C30—C29—C34—C33 −0.1 (2)
C16—C11—C12—C13 −1.5 (2) N4—C29—C34—C33 179.55 (14)
C10—C11—C12—C13 173.45 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C3—H3A···S1 0.93 2.52 3.217 (2) 132
C22—H22B···S1 0.97 2.80 3.232 (2) 108
C6—H6A···Cg1i 0.93 2.81 3.717 (2) 165
C21—H21C···Cg2ii 0.96 2.89 3.829 (2) 168

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2592).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Dave, T. K., Purohit, D. H., Akbari, J. D. & Joshi, H. S. (2007). Indian J. Heterocycl. Chem.46B, 352–356.
  5. Kalluraya, B., Isloor, A. M., Chimbalkar, R. M. & Shenoy, S. (2001). Indian J. Heterocycl. Chem.10, 239–240.
  6. Kalluraya, B., Lingappa, B. & Rai, N. S. (2007). Phosphorus Sulfur Silicon Relat. Elem.182, 1393–1401.
  7. Kalluraya, B. & Rai, G. (2003). Synth. Commun.33, 3583–3589.
  8. Kalluraya, B., Rai, G., Rai, S. & Shenoy, S. (2004). Indian J. Heterocycl. Chem.14, 127–130.
  9. Kane, J. M., Baron, B. M., Dudley, M. W., Sorensen, S. M., Staeger, M. A. & Miller, F. P. (1990). J. Med. Chem.33, 2772–2777. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012713/ci2592sup1.cif

e-64-o1001-sup1.cif (28KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012713/ci2592Isup2.hkl

e-64-o1001-Isup2.hkl (634.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES