Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 7;64(Pt 6):o1013. doi: 10.1107/S1600536808012920

(E)-4-(4-Fluoro­styr­yl)benzoic acid

Saba Nazir a, Khushi Muhammad a, M Khawar Rauf b, Masahiro Ebihara b, Shahid Hameed a,*
PMCID: PMC2961507  PMID: 21202538

Abstract

The title compound, C15H11FO2, is an important inter­mediate in the synthesis of side-chain ligands for polymeric liquid crystals. The vinyl group is almost coplanar with both the aromatic rings. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonding.

Related literature

For related literature, see: Ahmad et al. (2003); Collings & Hird (1997); Frazee & Foraker (2008); Hameed & Rama (2004); Hussain et al. (2005); Nazir et al. (2008); Ribeiro et al. (2008); Wang et al. (2008); Higashi (1999); Yasuda et al. (2000).graphic file with name e-64-o1013-scheme1.jpg

Experimental

Crystal data

  • C15H11FO2

  • M r = 242.24

  • Monoclinic, Inline graphic

  • a = 6.261 (4) Å

  • b = 23.096 (15) Å

  • c = 8.269 (5) Å

  • β = 107.072 (8)°

  • V = 1143.1 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 (2) K

  • 0.45 × 0.30 × 0.18 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 9111 measured reflections

  • 2589 independent reflections

  • 2399 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.155

  • S = 1.16

  • 2589 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CrystalClear (MSC/Rigaku, 2001); cell refinement: CrystalClear; data reduction: TEXSAN (MSC/Rigaku, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 and TEXSAN.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012920/hg2398sup1.cif

e-64-o1013-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012920/hg2398Isup2.hkl

e-64-o1013-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 1.04 (4) 1.57 (4) 2.610 (2) 174 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

MKR is grateful to the Higher Education Commission of Pakistan for financial support under the International Support Initiative for Doctoral Fellowships at Gifu University, Japan.

supplementary crystallographic information

Comment

Carboxylic acids constitute an important class of organic compounds and have been used by the medicinal industry as important drugs (Ribeiro et al., 2008; Frazee & Foraker 2008; Hameed & Rama 2004). The carboxylic acids have also found applications as intermediates in the synthesis of an enormous number of organic compounds, in general (Hussain et al., 2005; Ahmad et al., 2003), and in the synthesis of side chain ligands for polymeric liquid crystals, in particular (Wang et al., 2008; Nazir et al., 2008). The liquid crystalline molecules containing substituents at 4-position behave as well ordered calamitic ligands as a side chain group (Collings & Hird, 1997) in side chain polymeric liquid crysrtals (SCPLCs). The derivatives of 4-(4-substituted styryl)benzoic acids have found applications as side chain groups in SCPLCs (Wang et al., 2008). As a part of a project to synthesize ligands for SCPLCs, the title compound, (E)-4-(4-fluorostyryl)benzoic acid (I), was synthesized by reacting 4-fluorobenzaldehyde with methyl [4-(methoxycarbonyl)benzyl]triphenylphosphonium bromide (Nazir et al., 2008) followed by hydrolysis. In the present article, the crystal structure of (I) is being reported. Bond lengths and angles are within the normal ranges as given for vinylbenzoic acid (Yasuda et al., 2000). The C(1)—O(1) and C(1)—O(2) bond lengths are 1.252 (2) and 1.291 (2) respectively,clearly indicating the partial double bond character of the carboxylate group. The carboxylic acid group subtends a dihedral angle[13.72 (16)°] with the phenyl ring C(2)/C(3)/C(4)/C(5)/C(6)/C(7).The vinyl group is almost coplanar with both the phenyl rings. The torsion angles between the phenyl rings and vinyl group fulfill the condition of coplanarity[near to 0° or 180 °]. Two molecules related by an inversion center form a dimer via two hydrogen bonds composed of two carboxyl groups as shown in Fig. 2.

Experimental

Methyl 4-(4-fluorostyryl)benzoate 0.8g (0.0031moles) and sodium hydroxide 0.126g (0.0031 moles) were dissolved in a mixture of 10 ml of methanol and 30 ml of water, and the mixture refluxed for 3 hours. The reaction mixture was cooled to room temperature and acidified with 6M HCl. The precipitated solid was filtered and recrystallized from hot ethanol. Yield: 76%, m.p: 240-252°C, Rf = 0.22 (n-hexane : ethyl acetate 7 : 3). IR (νmax, KBr, cm-1): 3300-2500, 1715, 1620, 1600, 1580, 1188, 1119, 965,834. 1H-NMR (300 MHz,DMSO-d6): δ 7.25 (2H, d, J = 9.0 Hz),7.28 (1H, d, J= 16.2 Hz), 7.42 (1H, d, J = 16.2 Hz), 7.71-7.67 (4H, m),7.95 (2H, d, J = 8.1 Hz), 12.93 (1H, s). 13C-NMR (75 MHz, DMSO-d6): δ 116.16 (d, J= 23 Hz), 126.90, 127.77, 129.23, 130.08 (d, J = 8 Hz), 131.95, 132.49, 133.71 (d, J = 3 Hz), 141.83, 162.42 (d, J = 246 Hz), 167.54.

Refinement

The O-bound H atom was refined isotropically. All the other H atoms were placed in idealized positions and treated as riding atoms with C—H distance in the range 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

Showing hydrogen bonded molecules through N—H···O.

Crystal data

C15H11FO2 F(000) = 504
Mr = 242.24 Dx = 1.408 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybc Cell parameters from 3252 reflections
a = 6.261 (4) Å θ = 3.1–27.5°
b = 23.096 (15) Å µ = 0.10 mm1
c = 8.269 (5) Å T = 123 K
β = 107.072 (8)° Needle, colourless
V = 1143.1 (13) Å3 0.45 × 0.30 × 0.18 mm
Z = 4

Data collection

Rigaku/MSC Mercury CCD diffractometer 2399 reflections with I > 2σ(I)
Radiation source: Rotating anode Rint = 0.036
graphite θmax = 27.5°, θmin = 3.1°
ω scans h = −8→6
9111 measured reflections k = −25→29
2589 independent reflections l = −10→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.7669P] where P = (Fo2 + 2Fc2)/3
2589 reflections (Δ/σ)max < 0.001
167 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7742 (3) 0.03235 (7) 0.8139 (2) 0.0188 (4)
O1 0.9748 (2) 0.04569 (6) 0.83715 (16) 0.0268 (3)
O2 0.7095 (2) −0.00358 (6) 0.90952 (16) 0.0258 (3)
H2 0.843 (6) −0.0202 (16) 1.006 (5) 0.089 (12)*
C2 0.5982 (3) 0.05820 (7) 0.6720 (2) 0.0188 (4)
C3 0.6547 (3) 0.10173 (8) 0.5755 (2) 0.0221 (4)
H3 0.8054 0.1143 0.6002 0.027*
C4 0.4916 (3) 0.12671 (8) 0.4437 (2) 0.0246 (4)
H4 0.5313 0.1568 0.3796 0.030*
C5 0.2699 (3) 0.10851 (8) 0.4031 (2) 0.0231 (4)
C6 0.2149 (3) 0.06476 (8) 0.5012 (2) 0.0232 (4)
H6 0.0645 0.0519 0.4756 0.028*
C7 0.3771 (3) 0.03999 (8) 0.6354 (2) 0.0213 (4)
H7 0.3374 0.0107 0.7020 0.026*
C8 0.1067 (3) 0.13727 (8) 0.2605 (2) 0.0250 (4)
H8 0.1586 0.1694 0.2111 0.030*
C9 −0.1064 (3) 0.12250 (8) 0.1943 (2) 0.0246 (4)
H9 −0.1587 0.0904 0.2436 0.030*
C10 −0.2687 (3) 0.15134 (8) 0.0517 (2) 0.0224 (4)
C11 −0.2127 (3) 0.19609 (8) −0.0431 (2) 0.0250 (4)
H11 −0.0628 0.2094 −0.0148 0.030*
C12 −0.3734 (3) 0.22120 (8) −0.1778 (2) 0.0273 (4)
H12 −0.3353 0.2514 −0.2424 0.033*
C13 −0.5900 (3) 0.20104 (8) −0.2150 (2) 0.0262 (4)
C14 −0.6531 (3) 0.15774 (8) −0.1256 (2) 0.0257 (4)
H14 −0.8040 0.1451 −0.1539 0.031*
C15 −0.4898 (3) 0.13277 (8) 0.0075 (2) 0.0241 (4)
H15 −0.5300 0.1023 0.0700 0.029*
F1 −0.7470 (2) 0.22525 (6) −0.34838 (15) 0.0419 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0185 (8) 0.0204 (8) 0.0175 (8) 0.0011 (6) 0.0052 (6) −0.0007 (6)
O1 0.0173 (6) 0.0346 (8) 0.0269 (7) 0.0001 (5) 0.0040 (5) 0.0061 (5)
O2 0.0227 (6) 0.0285 (7) 0.0251 (6) 0.0005 (5) 0.0053 (5) 0.0084 (5)
C2 0.0190 (8) 0.0200 (8) 0.0165 (8) 0.0030 (6) 0.0038 (6) −0.0018 (6)
C3 0.0213 (8) 0.0251 (9) 0.0195 (8) 0.0016 (7) 0.0054 (6) −0.0001 (6)
C4 0.0267 (9) 0.0253 (9) 0.0219 (8) 0.0031 (7) 0.0073 (7) 0.0034 (7)
C5 0.0246 (9) 0.0249 (9) 0.0175 (8) 0.0057 (7) 0.0029 (7) −0.0022 (6)
C6 0.0175 (8) 0.0265 (9) 0.0237 (8) 0.0019 (7) 0.0032 (7) −0.0034 (7)
C7 0.0196 (8) 0.0226 (9) 0.0211 (8) 0.0012 (7) 0.0052 (6) −0.0003 (6)
C8 0.0238 (9) 0.0262 (9) 0.0234 (8) 0.0025 (7) 0.0045 (7) 0.0031 (7)
C9 0.0264 (9) 0.0248 (9) 0.0221 (8) 0.0011 (7) 0.0062 (7) 0.0004 (7)
C10 0.0220 (9) 0.0243 (9) 0.0187 (8) 0.0044 (7) 0.0028 (6) −0.0041 (6)
C11 0.0216 (9) 0.0259 (10) 0.0265 (9) −0.0002 (7) 0.0055 (7) −0.0057 (7)
C12 0.0347 (10) 0.0217 (9) 0.0265 (9) 0.0025 (8) 0.0104 (8) 0.0006 (7)
C13 0.0280 (9) 0.0233 (9) 0.0215 (8) 0.0116 (7) −0.0018 (7) −0.0012 (7)
C14 0.0188 (8) 0.0273 (9) 0.0290 (9) 0.0019 (7) 0.0038 (7) −0.0072 (7)
C15 0.0260 (9) 0.0229 (9) 0.0232 (8) 0.0013 (7) 0.0067 (7) −0.0006 (7)
F1 0.0413 (7) 0.0402 (8) 0.0330 (7) 0.0202 (6) −0.0063 (5) 0.0036 (5)

Geometric parameters (Å, °)

C1—O1 1.252 (2) C8—C9 1.330 (3)
C1—O2 1.291 (2) C8—H8 0.9500
C1—C2 1.479 (2) C9—C10 1.471 (2)
O2—H2 1.04 (4) C9—H9 0.9500
C2—C3 1.392 (3) C10—C15 1.392 (3)
C2—C7 1.393 (3) C10—C11 1.402 (3)
C3—C4 1.382 (2) C11—C12 1.390 (3)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.394 (3) C12—C13 1.380 (3)
C4—H4 0.9500 C12—H12 0.9500
C5—C6 1.401 (3) C13—F1 1.363 (2)
C5—C8 1.473 (2) C13—C14 1.369 (3)
C6—C7 1.389 (2) C14—C15 1.389 (3)
C6—H6 0.9500 C14—H14 0.9500
C7—H7 0.9500 C15—H15 0.9500
O1—C1—O2 123.07 (15) C9—C8—H8 116.9
O1—C1—C2 120.16 (15) C5—C8—H8 116.9
O2—C1—C2 116.78 (15) C8—C9—C10 125.99 (18)
C1—O2—H2 112 (2) C8—C9—H9 117.0
C3—C2—C7 119.79 (15) C10—C9—H9 117.0
C3—C2—C1 119.41 (16) C15—C10—C11 118.25 (16)
C7—C2—C1 120.80 (16) C15—C10—C9 118.07 (17)
C4—C3—C2 120.05 (17) C11—C10—C9 123.68 (17)
C4—C3—H3 120.0 C12—C11—C10 120.96 (18)
C2—C3—H3 120.0 C12—C11—H11 119.5
C3—C4—C5 121.11 (18) C10—C11—H11 119.5
C3—C4—H4 119.4 C13—C12—C11 118.08 (18)
C5—C4—H4 119.4 C13—C12—H12 121.0
C4—C5—C6 118.38 (16) C11—C12—H12 121.0
C4—C5—C8 117.69 (17) F1—C13—C14 118.85 (18)
C6—C5—C8 123.92 (17) F1—C13—C12 118.02 (18)
C7—C6—C5 120.88 (17) C14—C13—C12 123.12 (17)
C7—C6—H6 119.6 C13—C14—C15 118.00 (17)
C5—C6—H6 119.6 C13—C14—H14 121.0
C6—C7—C2 119.77 (17) C15—C14—H14 121.0
C6—C7—H7 120.1 C14—C15—C10 121.58 (18)
C2—C7—H7 120.1 C14—C15—H15 119.2
C9—C8—C5 126.22 (18) C10—C15—H15 119.2
O1—C1—C2—C3 −6.5 (2) C6—C5—C8—C9 −7.2 (3)
O2—C1—C2—C3 173.26 (15) C5—C8—C9—C10 −179.93 (17)
O1—C1—C2—C7 174.23 (16) C8—C9—C10—C15 −175.06 (18)
O2—C1—C2—C7 −6.0 (2) C8—C9—C10—C11 5.5 (3)
C7—C2—C3—C4 −0.1 (3) C15—C10—C11—C12 −0.1 (3)
C1—C2—C3—C4 −179.31 (16) C9—C10—C11—C12 179.26 (17)
C2—C3—C4—C5 −1.0 (3) C10—C11—C12—C13 0.4 (3)
C3—C4—C5—C6 1.1 (3) C11—C12—C13—F1 −179.25 (16)
C3—C4—C5—C8 −179.83 (16) C11—C12—C13—C14 0.1 (3)
C4—C5—C6—C7 −0.2 (3) F1—C13—C14—C15 178.64 (16)
C8—C5—C6—C7 −179.19 (17) C12—C13—C14—C15 −0.7 (3)
C5—C6—C7—C2 −0.9 (3) C13—C14—C15—C10 0.9 (3)
C3—C2—C7—C6 1.0 (3) C11—C10—C15—C14 −0.5 (3)
C1—C2—C7—C6 −179.80 (15) C9—C10—C15—C14 −179.93 (16)
C4—C5—C8—C9 173.72 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 1.04 (4) 1.57 (4) 2.610 (2) 174 (3)

Symmetry codes: (i) −x+2, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2398).

References

  1. Ahmad, H. B., Rama, N. H., Hussain, M., Hussain, M. T., Qasim, M. M., Hameed, S., Malana, M. A. & Malik, A. (2003). Indian J. Chem. B42, 611–615.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Collings, P. J. & Hird, M. (1997). Introduction to Liquid Crystals, Chemistry and Physics, edited by G. W. Gray, J. W. Goodby & A. Fukuda, pp. 43–78. Bristol: Taylor and Francis.
  4. Frazee, L. A. & Foraker, K. C. (2008). Annals Pharmacother.42, 403–407. [DOI] [PubMed]
  5. Hameed, S. & Rama, N. H. (2004). J. Chem. Soc. Pak.26, 157–162.
  6. Higashi, T. (1999). NUMABS Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
  7. Hussain, M. T., Rama, N. H., Hameed, S., Malik, A. & Khan, K. M. (2005). Nat. Prod. Res.19, 41–51. [DOI] [PubMed]
  8. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  9. MSC/Rigaku (2001). CrystalClear MSC/Rigaku, The Woodlands, Texas, USA.
  10. MSC/Rigaku (2004). TEXSAN MSC/Rigaku, The Woodlands, Texas, USA.
  11. Nazir, S., Khawar Rauf, M., Ebihara, M. & Hameed, S. (2008). Acta Cryst. E64, o423. [DOI] [PMC free article] [PubMed]
  12. Ribeiro, G., Benadiba, M., Colquhoun, A. & Silva, D. D. (2008). Polyhedron, 27, 1131–1137.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Wang, M. L., Liu, B. L. & Lin, S. J. (2008). Chem. Eng. Commun.195, 770–786.
  15. Yasuda, N., Uekusa, H. & Ohashi, Y. (2000). Acta Cryst. C56, 1364–1366. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012920/hg2398sup1.cif

e-64-o1013-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012920/hg2398Isup2.hkl

e-64-o1013-Isup2.hkl (127.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES