Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1097. doi: 10.1107/S160053680801430X

3,3′-Bis(4-nitro­phen­yl)-1,1′-(p-phenyl­ene)dithio­urea dimethyl sulfoxide disolvate

Wen-Kui Dong a,*, Hai-Bo Yan a, Lan-Qin Chai a, Zhong-Wu Lv a, Chun-Yu Zhao a
PMCID: PMC2961527  PMID: 21202611

Abstract

The asymmetric unit of the title compound, C22H16N6O6S2·2C2H6OS, consists of one half-mol­ecule of the centrosymmetric thiourea derivative and one molecule of dimethyl sulfoxide (DMSO). The carbonyl group forms an intra­molecular hydrogen bond with the NH group, creating a six-membered (C—N—C—N—H⋯O) ring. Two other N—H⋯O hydro­gen bonds link one mol­ecule of the thio­urea to two mol­ecules of DMSO.

Related literature

For related literature, see: Burrows et al. (1997); Dong et al. (2006, 2007); Foss et al. (2004); Valdés-Martínez et al. (2000, 2004); Zhang et al. (2006); Huang et al. (2006).graphic file with name e-64-o1097-scheme1.jpg

Experimental

Crystal data

  • C22H16N6O6S2·2C2H6OS

  • M r = 680.78

  • Monoclinic, Inline graphic

  • a = 11.6949 (18) Å

  • b = 6.6916 (11) Å

  • c = 20.449 (2) Å

  • β = 106.353 (2)°

  • V = 1535.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 298 (2) K

  • 0.33 × 0.17 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.888, T max = 0.961

  • 7318 measured reflections

  • 2684 independent reflections

  • 1547 reflections with I > 2σ(I)

  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.199

  • S = 0.96

  • 2684 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801430X/fl2195sup1.cif

e-64-o1097-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801430X/fl2195Isup2.hkl

e-64-o1097-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 2.09 2.942 (5) 169
N2—H2⋯O1 0.86 1.84 2.579 (5) 143

Acknowledgments

We gratefully acknowledge support of this work by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A).

supplementary crystallographic information

Comment

Thiourea and its derivatives are of interest to us because of their varied biological activity as well as their ability to form strong H bonds as both donors and acceptors (Valdés-Martínez, et al., 2000; Jesus, et al., 2004, Burrows et al., 1997), and their tendency to coordinate with metal ions (Huang, et al., 2006; Foss, et al., 2004). In recent years, thioureas have been recognized as important neutral receptors because of their anion recognition properties (Zhang, et al., 2006) and for their ability to easily form intramolecular hydrogen bonds such as between the benzoyl (CO) and the N—H group of acylthioureas (Dong et al., 2006). In continuation of our previous studies on the synthesis and structural characterization of N-benzoyl-N'-(3-pyridyl)thiourea (II) (Dong, et al., 2006) and N,N'-(1,6-hexamethylene)-bis(benzoylthiourea) (Dong, et al., 2007), a novel bisbenzoylthiourea which crystallized as a dimethyl sulfoxide disolvate (I) has now been synthesized and structurally characterized.

The crystal structure of (I) is built up by one N, N'-(p-phenyl)-bis(p-nitro)benzoylthiourea molecule and two dimethyl sulfoxide solvent molecules. The carbonyl group of the thiourea forms an intramolecular hydrogen bond with the N—H group to form a six-membered (C/N/C/N/H/O) ring. The C=O bond length at 1.225 (5)Å is longer than the average C=O bond length (1.200 Å). This is most likely due to the intramolecular hydrogen bonding which is similar to the situation found in the structure of (II) (Dong, et al., 2006).

There are also N—H···O hydrogen bonds between N1 of the thiourea and the O atoms of the DMSO S=O groups which, together with other intermolecular C—H···O and C—H···S interactions, stabilize the three-dimensional structure of (I).

Experimental

(p-Nitro)benzoyl chloride (1.86 g, 10 mmol) was reacted with ammonium thiocyanate (1.14 g, 15 mmol) in CH2Cl2 (25 ml) solution under solid-liquid phase transfer catalysis, using polyethylene glycol-400 (0.18 g) as the catalyst, to give the corresponding (p-nitro)benzoyl isothiocyanate under stirring at the room temperature. This was followed by slow addition of 15 ml CH2Cl2 solution dissolved p-phenylenediamine (1.60 g, 0.01 mmol). The corresponding yellow compound precipitated immediately. The product was filtered, washed with water and CH2Cl2, dried, and recrystallized from THF to give the titled thiourea. Yield, 72.6%. m. p. 243 - 244 °C. Anal. Calc. for C22H16N6O6S2 (%): C, 50.38; H, 3.07; N, 16.02. Found: C, 50.27; H, 3.15; N, 15.99. Selected IR data (cm-1 , KBr pellet): 3341, 3191 (ν NH), 1675 (ν C=O), 1152 (ν C=S). 1H NMR (400 MHz, DMSO-d6, δ, p.p.m.): 8.05 (d, J = 17.2 Hz, 4H, ArH), 8.19 (d, J = 8.2 Hz, 4H, ArH), 8.34 (dd, J = 17.2, 7.2 Hz, 4H, ArH), 11.98 (s, 2H, NH), 12.42 (s, 2H, NH).

A DMSO solution of the thiourea was placed in a hexane atmosphere, after about one week, along with diffusion of hexane into the DMSO solution, yellow needle-shaped single crystals suitable for X-ray crystallographic analysis were obtained.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96(CH2), or 0.93Å (CH),O—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecule structure of (I) with the atom numbering. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Crystal data

C22H16N6O6S2·2C2H6OS F000 = 708
Mr = 680.78 Dx = 1.472 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 11.6949 (18) Å Cell parameters from 1517 reflections
b = 6.6916 (11) Å θ = 3.3–25.3º
c = 20.449 (2) Å µ = 0.37 mm1
β = 106.353 (2)º T = 298 (2) K
V = 1535.5 (4) Å3 Needle-shaped, yellow
Z = 2 0.33 × 0.17 × 0.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2684 independent reflections
Radiation source: fine-focus sealed tube 1547 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.097
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −11→13
Tmin = 0.888, Tmax = 0.961 k = −7→7
7318 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069 H-atom parameters constrained
wR(F2) = 0.199   w = 1/[σ2(Fo2) + (0.1071P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
2684 reflections Δρmax = 0.44 e Å3
199 parameters Δρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.7828 (3) 0.3522 (5) 0.51603 (16) 0.0505 (8)
H1 0.7673 0.2724 0.5454 0.061*
N2 0.8719 (3) 0.6436 (5) 0.49516 (16) 0.0507 (9)
H2 0.8343 0.6109 0.4541 0.061*
N3 0.4791 (3) −0.4240 (5) 0.36972 (18) 0.0565 (9)
O1 0.7411 (3) 0.4141 (5) 0.40259 (14) 0.0614 (8)
O2 0.4552 (3) −0.4678 (5) 0.31005 (16) 0.0733 (10)
O3 0.4566 (3) −0.5286 (5) 0.41241 (17) 0.0776 (10)
O4 0.7382 (3) 0.1230 (6) 0.62917 (14) 0.0782 (10)
S1 0.91836 (14) 0.5258 (2) 0.62543 (6) 0.0858 (6)
S2 0.82807 (12) 0.0691 (2) 0.69426 (6) 0.0711 (5)
C1 0.8572 (4) 0.5173 (6) 0.5429 (2) 0.0502 (10)
C2 0.9391 (3) 0.8218 (6) 0.5010 (2) 0.0454 (10)
C3 0.9492 (4) 0.9013 (7) 0.4410 (2) 0.0557 (11)
H3 0.9141 0.8344 0.4004 0.067*
C4 1.0090 (4) 1.0755 (7) 0.4389 (2) 0.0562 (11)
H4 1.0150 1.1251 0.3975 0.067*
C5 0.7326 (3) 0.3047 (6) 0.44901 (19) 0.0455 (10)
C6 0.6642 (3) 0.1137 (6) 0.43250 (18) 0.0443 (9)
C7 0.6443 (4) −0.0164 (6) 0.4804 (2) 0.0501 (10)
H7 0.6723 0.0141 0.5265 0.060*
C8 0.5824 (4) −0.1933 (7) 0.4596 (2) 0.0548 (11)
H8 0.5674 −0.2810 0.4915 0.066*
C9 0.5441 (3) −0.2359 (6) 0.39199 (19) 0.0461 (10)
C10 0.5631 (4) −0.1108 (7) 0.3439 (2) 0.0600 (12)
H10 0.5363 −0.1438 0.2979 0.072*
C11 0.6225 (4) 0.0652 (7) 0.3643 (2) 0.0592 (12)
H11 0.6349 0.1531 0.3318 0.071*
C12 0.8181 (5) 0.2507 (9) 0.7540 (2) 0.0870 (17)
H12A 0.8448 0.3769 0.7414 0.131*
H12B 0.8671 0.2124 0.7983 0.131*
H12C 0.7368 0.2624 0.7550 0.131*
C13 0.7650 (6) −0.1309 (11) 0.7298 (3) 0.120 (2)
H13A 0.6928 −0.0866 0.7388 0.180*
H13B 0.8206 −0.1736 0.7716 0.180*
H13C 0.7477 −0.2405 0.6983 0.180*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.050 (2) 0.046 (2) 0.0538 (19) −0.0108 (17) 0.0109 (15) 0.0002 (17)
N2 0.0460 (19) 0.047 (2) 0.0551 (19) −0.0107 (16) 0.0077 (15) −0.0008 (17)
N3 0.064 (2) 0.048 (2) 0.055 (2) −0.0041 (18) 0.0123 (18) 0.0011 (18)
O1 0.0683 (19) 0.057 (2) 0.0569 (17) −0.0188 (15) 0.0140 (14) 0.0064 (15)
O2 0.094 (2) 0.065 (2) 0.0564 (19) −0.0207 (18) 0.0137 (17) −0.0127 (16)
O3 0.100 (3) 0.064 (2) 0.064 (2) −0.0294 (19) 0.0153 (18) 0.0067 (17)
O4 0.090 (2) 0.090 (3) 0.0495 (18) −0.021 (2) 0.0117 (16) 0.0026 (17)
S1 0.1133 (12) 0.0803 (10) 0.0544 (8) −0.0440 (9) 0.0080 (7) −0.0012 (6)
S2 0.0732 (9) 0.0804 (10) 0.0590 (7) 0.0026 (7) 0.0174 (6) −0.0010 (6)
C1 0.043 (2) 0.048 (3) 0.059 (3) −0.0024 (19) 0.0118 (19) −0.002 (2)
C2 0.035 (2) 0.040 (2) 0.060 (2) −0.0015 (17) 0.0101 (17) 0.0030 (19)
C3 0.059 (3) 0.049 (3) 0.054 (2) −0.009 (2) 0.0082 (19) −0.007 (2)
C4 0.064 (3) 0.055 (3) 0.050 (2) −0.011 (2) 0.016 (2) −0.002 (2)
C5 0.035 (2) 0.048 (3) 0.050 (2) −0.0030 (18) 0.0056 (17) 0.001 (2)
C6 0.040 (2) 0.047 (2) 0.046 (2) −0.0016 (18) 0.0121 (17) 0.0012 (18)
C7 0.051 (2) 0.053 (3) 0.042 (2) −0.006 (2) 0.0060 (18) −0.0026 (19)
C8 0.062 (3) 0.052 (3) 0.053 (2) −0.008 (2) 0.021 (2) 0.004 (2)
C9 0.046 (2) 0.042 (2) 0.047 (2) −0.0039 (18) 0.0067 (17) 0.0017 (19)
C10 0.073 (3) 0.061 (3) 0.042 (2) −0.018 (2) 0.011 (2) −0.001 (2)
C11 0.073 (3) 0.060 (3) 0.046 (2) −0.023 (2) 0.017 (2) 0.008 (2)
C12 0.101 (4) 0.097 (4) 0.059 (3) 0.013 (3) 0.016 (3) −0.001 (3)
C13 0.158 (6) 0.091 (5) 0.100 (4) −0.022 (5) 0.020 (4) 0.024 (4)

Geometric parameters (Å, °)

N1—C5 1.368 (4) C4—H4 0.9300
N1—C1 1.418 (5) C5—C6 1.495 (6)
N1—H1 0.8600 C6—C7 1.379 (6)
N2—C1 1.338 (5) C6—C11 1.380 (5)
N2—C2 1.414 (5) C7—C8 1.390 (6)
N2—H2 0.8600 C7—H7 0.9300
N3—O3 1.204 (4) C8—C9 1.358 (5)
N3—O2 1.209 (4) C8—H8 0.9300
N3—C9 1.475 (5) C9—C10 1.356 (6)
O1—C5 1.225 (5) C10—C11 1.371 (6)
O4—S2 1.490 (3) C10—H10 0.9300
S1—C1 1.638 (4) C11—H11 0.9300
S2—C12 1.750 (5) C12—H12A 0.9600
S2—C13 1.779 (6) C12—H12B 0.9600
C2—C3 1.372 (5) C12—H12C 0.9600
C2—C4i 1.389 (5) C13—H13A 0.9600
C3—C4 1.367 (6) C13—H13B 0.9600
C3—H3 0.9300 C13—H13C 0.9600
C4—C2i 1.389 (5)
C5—N1—C1 127.8 (3) C11—C6—C5 116.4 (3)
C5—N1—H1 116.1 C6—C7—C8 119.9 (4)
C1—N1—H1 116.1 C6—C7—H7 120.1
C1—N2—C2 130.8 (3) C8—C7—H7 120.1
C1—N2—H2 114.6 C9—C8—C7 119.0 (4)
C2—N2—H2 114.6 C9—C8—H8 120.5
O3—N3—O2 123.7 (4) C7—C8—H8 120.5
O3—N3—C9 118.1 (3) C10—C9—C8 122.3 (4)
O2—N3—C9 118.1 (4) C10—C9—N3 118.6 (3)
O4—S2—C12 106.6 (2) C8—C9—N3 119.2 (4)
O4—S2—C13 106.1 (2) C9—C10—C11 118.8 (4)
C12—S2—C13 96.9 (3) C9—C10—H10 120.6
N2—C1—N1 113.6 (3) C11—C10—H10 120.6
N2—C1—S1 128.4 (3) C10—C11—C6 121.0 (4)
N1—C1—S1 117.9 (3) C10—C11—H11 119.5
C3—C2—C4i 118.2 (4) C6—C11—H11 119.5
C3—C2—N2 115.9 (4) S2—C12—H12A 109.5
C4i—C2—N2 125.8 (4) S2—C12—H12B 109.5
C4—C3—C2 122.1 (4) H12A—C12—H12B 109.5
C4—C3—H3 118.9 S2—C12—H12C 109.5
C2—C3—H3 118.9 H12A—C12—H12C 109.5
C3—C4—C2i 119.6 (4) H12B—C12—H12C 109.5
C3—C4—H4 120.2 S2—C13—H13A 109.5
C2i—C4—H4 120.2 S2—C13—H13B 109.5
O1—C5—N1 122.2 (4) H13A—C13—H13B 109.5
O1—C5—C6 119.4 (3) S2—C13—H13C 109.5
N1—C5—C6 118.4 (4) H13A—C13—H13C 109.5
C7—C6—C11 119.1 (4) H13B—C13—H13C 109.5
C7—C6—C5 124.5 (3)
C2—N2—C1—N1 −179.4 (4) C11—C6—C7—C8 −0.3 (6)
C2—N2—C1—S1 −2.6 (7) C5—C6—C7—C8 −178.1 (4)
C5—N1—C1—N2 4.2 (6) C6—C7—C8—C9 1.0 (6)
C5—N1—C1—S1 −173.0 (3) C7—C8—C9—C10 −0.7 (7)
C1—N2—C2—C3 170.9 (4) C7—C8—C9—N3 179.6 (4)
C1—N2—C2—C4i −11.5 (7) O3—N3—C9—C10 −175.8 (4)
C4i—C2—C3—C4 0.6 (7) O2—N3—C9—C10 6.8 (6)
N2—C2—C3—C4 178.4 (4) O3—N3—C9—C8 4.0 (6)
C2—C3—C4—C2i −0.6 (7) O2—N3—C9—C8 −173.4 (4)
C1—N1—C5—O1 −5.3 (6) C8—C9—C10—C11 −0.3 (7)
C1—N1—C5—C6 175.5 (4) N3—C9—C10—C11 179.4 (4)
O1—C5—C6—C7 −177.0 (4) C9—C10—C11—C6 1.1 (7)
N1—C5—C6—C7 2.3 (6) C7—C6—C11—C10 −0.7 (7)
O1—C5—C6—C11 5.2 (6) C5—C6—C11—C10 177.2 (4)
N1—C5—C6—C11 −175.6 (4)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O4 0.86 2.09 2.942 (5) 169
N2—H2···O1 0.86 1.84 2.579 (5) 143

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2195).

References

  1. Burrows, A. D., Menzer, S. & Michael, D. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240.
  2. Dong, W.-K., Yang, X.-Q. & Feng, J.-H. (2006). Acta Cryst. E62, o3459–o3460.
  3. Dong, W.-K., Yang, X.-Q., Xu, L., Wang, L., Liu, G. L. & Feng, J.-H. (2007). Z. Kristallogr. New Cryst. Struct.222, 279–280.
  4. Foss, O., Husebye, S. & Törnroos, K. (2004). Polyhedron, 23, 3021–3032.
  5. Huang, J., Song, J.-R. & Ren, Y.-H. (2006). Chin. J. Struct. Chem.25, 168–172.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Valdés-Martínez, J., Hernández-Ortega, S., Ackerman, L. J., Li, D. T., Swearingen, J. K. & West, D. X. (2000). J. Mol. Struct.524, 51–59.
  10. Valdés-Martínez, J., Hernández-Ortega, S., Rubio, M., Li, D. T., Swearingen, J. K., Kaminsky, W., Kelman D. R. & West, D. X. (2004). J. Chem. Crystallogr.34, 533–540.
  11. Zhang, Y.-M., Xu, W.-X. & Zhou, Y.-Q. (2006). Acta Chim. Sinica, 64, 79–84.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801430X/fl2195sup1.cif

e-64-o1097-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801430X/fl2195Isup2.hkl

e-64-o1097-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES