Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1031. doi: 10.1107/S1600536808013378

2-Bromo­methyl-N-isopropyl-7,8-dimeth­oxy-1,2-dihydro-1,3-oxazolo[3,2-a]quinoline-4-carboxamide

Svetlana V Shishkina a,*, Oleg V Shishkin a, Igor V Ukrainets b, Nataliya L Bereznyakova b, Alexandra A Davidenko b
PMCID: PMC2961529  PMID: 21202555

Abstract

In the title compound, C18H21BrN2O5, conjugation between the π-donating N—C—O fragment and the π-withdrawing carbonyl group results in considerable redistribution of the electron density within the dihydropyridinol ring. This effect is also promoted by the formation of an intra­molecular N—H⋯O hydrogen bond. The five-membered heterocycle is disordered over two envelope conformations in a 0.35:0.65 ratio.

Related literature

For related literature, see: Ukrainets et al. (2007a ,b ); Bürgi & Dunitz (1994); Hutcheon & James (1977).graphic file with name e-64-o1031-scheme1.jpg

Experimental

Crystal data

  • C18H21BrN2O5

  • M r = 425.28

  • Triclinic, Inline graphic

  • a = 8.736 (2) Å

  • b = 9.968 (2) Å

  • c = 10.588 (3) Å

  • α = 86.90 (2)°

  • β = 80.90 (2)°

  • γ = 80.04 (2)°

  • V = 896.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.33 mm−1

  • T = 100 (2) K

  • 0.60 × 0.40 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: analytical (Alcock, 1970) T min = 0.287, T max = 0.793

  • 6292 measured reflections

  • 3105 independent reflections

  • 2701 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.171

  • S = 1.05

  • 3105 reflections

  • 258 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013378/kp2166sup1.cif

e-64-o1031-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013378/kp2166Isup2.hkl

e-64-o1031-Isup2.hkl (152.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3 0.88 1.91 2.634 (5) 138
C10A—H10A⋯O3i 1.00 2.23 3.042 137
C12A—H12A⋯O2ii 0.99 2.33 3.289 164
C12A—H12B⋯O4iii 0.99 2.41 3.173 134
C12B—H12D⋯O2ii 0.99 2.30 3.253 162
C17—H17A⋯O5iv 0.98 2.41 3.380 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

2-Bromomethyl-5-oxo-1,2-dihydro-5H-oxazolo[3,2-a]quinoline-4- carboxylic acids are labile compounds. Therefore, their amidation are not always successful (Ukrainets et al., 2007a; Ukrainets et al., 2007b). However the heterocyclization of the previously synthesized NR-amides of 1-allyl-4-hydroxy-2-oxo-1,2-dihydroquinoline-3-carboxylic acids was straightforward into the NR-amides of oxazolo-quinoline-4-carboxylic acids (I) (Scheme 1). In the present paper, we report the crystal structure of the title compound, (I). The benzpyridone fragment and the O1, C11, O5, O4, O3, C13, O2, N2 atoms are cooplanar whithin 0.02 Å. The C7—O3 (1.263 (5) Å) and C8—C9 (1.386 (6) Å) bonds are elongated comparing to the values in the literature (1.210 Å and 1.326 Å; Burgi & Dunitz, 1994) whereas the C9—O1 (1.336 (5) Å) and N1—C9 (1.333 (6) Å) bonds are shorter than their mean values retrieved from the quoted references (1.354 Å and 1.336 Å). Such redistribution of the electron density can be explained by the conjugation interactions between the N1—C9—O1 π-donating fragment and the C7—O3 π-acceptor carbonyl group. Similar effect was observed earlier in related structure (Hucheon & James, 1977). The formation of the N2—H2N···O3 intramolecular hydrogen bond (Table 1) also promotes the elongation of the carbonyl bond. The five-membered heterocycle ring is disodered over two envelope conformations (A and B) with population A:B 35:65%. The deviation of the C10 atom from the mean plane of the remaining atoms of the ring is -0.41 Å in the conformer A and 0.35 Å in B. The bromomethyl substituent in both conformers is in a pseudo-equatorial orientation (the C9—O1—C10—C12 torsion angle is 145.1 (7) %A in A and -138.1 (5) %A in B). The bromine atom is not disordered and it is located in ap-position relatively to the O1—C10 bond in both conformers [the O1—C10—C12—Br1 torsion angle is -179.9 (6) %A (A) and 178.5 (3) %A (B)]. The methoxy groups at the C3 and C4 atoms are almost coplanar to the plane of the aromatic ring (the C18—O5—C3—C2 and C17—O4—C4—C5 torsion angles are 4.2 (6) %A and -6.2 (6) %A, respectively). The isopropyl group has ap-conformation relatively to the C8—C13 bond and it is turned away from the C13—N2 bond (the C14—N2—C13—C8 and C13—N2—C14—H14a torsion angles are 174.7 (4) %A and -40%A, respectively). In the crystal the molecules of the title compound form the three-dimensional network via intermolecular hydrogen bonds (Table 1). The shortened intermolecular contacts H14a···Br1i (i = -x,-y,1 - z) 3.13 Å (van der Waals sum 3.23 Å), H18c···C7ii (ii = 1 - x,1 - y,1 - z) 2.70 Å (2.87 Å), Br1···Br1iii (iii = 1 - x,-y,-z) 3.42 Å (3.94 Å) were observed in the crystal. Stacking interaction between parallel aromatic rings is observed [the shortest C3···C1ii (1 - x,1 - y,1 - z) distance is 3.45 Å].

Experimental

To a stirred solution of the 1-allyl-4-hydroxy-6,7-dimethoxy-2-oxo- 1,2-dihydroquinoline-3-carboxylic acid isopropylamide (3.46 g, 10.0 mmol) in acetic acid (70 ml) was added bromine (0.52 ml, 10.0 mmol) (the solution turned to be colourless). The mixture was diluted with water. The precipitate formed was filtered off, washed with cold water and dried. Yield 3.95 g (93%). m.p. 542–544 K.

Refinement

All hydrogen atoms were calculated geometrically and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms. During refinement the O-Csp3 and Csp3-Csp3 bonds in the disordered fragment were constrained to 1.44 (1) Å and 1.54 (1) Å, respectively.

Figures

Fig. 1.

Fig. 1.

View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level. More predominant orientation (65%) of the disodered fragment of the oxazol ring is shown.

Fig. 2.

Fig. 2.

The formation of the title compound.

Crystal data

C18H21BrN2O5 Z = 2
Mr = 425.28 F000 = 436
Triclinic, P1 Dx = 1.576 Mg m3
a = 8.736 (2) Å Mo Kα radiation λ = 0.71073 Å
b = 9.968 (2) Å Cell parameters from 2385 reflections
c = 10.588 (3) Å θ = 4–32º
α = 86.90 (2)º µ = 2.33 mm1
β = 80.90 (2)º T = 100 (2) K
γ = 80.04 (2)º Plate, colourless
V = 896.4 (4) Å3 0.60 × 0.40 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur3 diffractometer 3105 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2701 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.089
Detector resolution: 16.1827 pixels mm-1 θmax = 25.0º
T = 100(2) K θmin = 3.3º
ω scans h = −10→10
Absorption correction: analytical(Alcock, 1970) k = −11→11
Tmin = 0.287, Tmax = 0.793 l = −12→12
6292 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.171   w = 1/[σ2(Fo2) + (0.0978P)2 + 1.3451P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3105 reflections Δρmax = 1.76 e Å3
258 parameters Δρmin = −0.88 e Å3
6 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Br1 0.34636 (6) 0.06689 (5) 0.11180 (4) 0.0383 (2)
N1 0.2519 (5) 0.3824 (4) 0.4324 (3) 0.0265 (8)
N2 −0.0961 (4) 0.3493 (4) 0.8290 (3) 0.0225 (8)
H2A −0.0854 0.4337 0.8407 0.027*
O1 0.1378 (4) 0.2004 (3) 0.4688 (3) 0.0292 (7)
O2 −0.0441 (4) 0.1744 (3) 0.6927 (3) 0.0308 (8)
O3 0.0389 (4) 0.5646 (3) 0.7631 (3) 0.0298 (7)
O4 0.3952 (4) 0.8815 (3) 0.5332 (3) 0.0256 (7)
O5 0.5279 (4) 0.7664 (3) 0.3238 (3) 0.0262 (7)
C1 0.2878 (5) 0.5081 (4) 0.4564 (4) 0.0222 (9)
C2 0.3940 (5) 0.5707 (4) 0.3692 (4) 0.0228 (9)
H2B 0.4432 0.5282 0.2916 0.027*
C3 0.4256 (5) 0.6961 (4) 0.3988 (4) 0.0216 (9)
C4 0.3527 (5) 0.7586 (4) 0.5161 (4) 0.0233 (9)
C5 0.2488 (5) 0.6966 (4) 0.5983 (4) 0.0243 (9)
H5A 0.1987 0.7400 0.6753 0.029*
C6 0.2142 (5) 0.5693 (4) 0.5715 (4) 0.0226 (9)
C7 0.1030 (5) 0.5046 (5) 0.6613 (4) 0.0237 (9)
C8 0.0756 (5) 0.3709 (4) 0.6301 (4) 0.0223 (9)
C9 0.1530 (5) 0.3193 (4) 0.5138 (4) 0.0239 (9)
C10A 0.1932 (13) 0.2038 (11) 0.3329 (6) 0.034 (4) 0.352 (14)
H10A 0.1049 0.2361 0.2832 0.041* 0.352 (14)
C12A 0.2721 (17) 0.0571 (12) 0.2995 (14) 0.034 (4) 0.352 (14)
H12A 0.1958 −0.0067 0.3198 0.040* 0.352 (14)
H12B 0.3614 0.0269 0.3471 0.040* 0.352 (14)
C10B 0.2633 (7) 0.1653 (5) 0.3608 (5) 0.0207 (18) 0.648 (14)
H10B 0.3527 0.0973 0.3854 0.025* 0.648 (14)
C12B 0.1808 (8) 0.1107 (7) 0.2615 (5) 0.0202 (19) 0.648 (14)
H12C 0.0939 0.1804 0.2379 0.024* 0.648 (14)
H12D 0.1376 0.0282 0.2954 0.024* 0.648 (14)
C11 0.3126 (5) 0.3038 (4) 0.3165 (4) 0.0264 (10)
H11B 0.4217 0.2559 0.3170 0.032* 0.352 (14)
H11A 0.3070 0.3614 0.2376 0.032* 0.352 (14)
H11C 0.4281 0.2960 0.2944 0.032* 0.648 (14)
H11D 0.2623 0.3439 0.2425 0.032* 0.648 (14)
C13 −0.0266 (5) 0.2875 (4) 0.7177 (4) 0.0219 (9)
C14 −0.1879 (5) 0.2772 (5) 0.9286 (4) 0.0259 (9)
H14A −0.2515 0.2222 0.8880 0.031*
C15 −0.2986 (6) 0.3822 (5) 1.0142 (5) 0.0344 (11)
H15A −0.3679 0.4416 0.9627 0.052*
H15B −0.2369 0.4371 1.0534 0.052*
H15C −0.3621 0.3353 1.0813 0.052*
C16 −0.0800 (7) 0.1829 (6) 1.0052 (5) 0.0425 (13)
H16A −0.0101 0.1164 0.9485 0.064*
H16B −0.1428 0.1350 1.0720 0.064*
H16C −0.0169 0.2362 1.0449 0.064*
C17 0.3101 (5) 0.9556 (4) 0.6430 (4) 0.0260 (9)
H17A 0.3497 1.0412 0.6470 0.039*
H17B 0.3248 0.9005 0.7210 0.039*
H17C 0.1980 0.9754 0.6356 0.039*
C18 0.6008 (5) 0.7119 (5) 0.2022 (4) 0.0263 (9)
H18A 0.6710 0.7723 0.1586 0.039*
H18B 0.5196 0.7050 0.1499 0.039*
H18C 0.6615 0.6213 0.2151 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0475 (4) 0.0419 (4) 0.0227 (3) −0.0146 (2) 0.0145 (2) −0.0105 (2)
N1 0.030 (2) 0.033 (2) 0.0146 (17) −0.0092 (15) 0.0090 (15) −0.0082 (15)
N2 0.0215 (18) 0.0273 (19) 0.0159 (17) −0.0045 (14) 0.0062 (14) −0.0004 (14)
O1 0.0334 (18) 0.0305 (17) 0.0208 (16) −0.0113 (13) 0.0137 (13) −0.0070 (13)
O2 0.0341 (18) 0.0302 (17) 0.0258 (16) −0.0107 (13) 0.0104 (14) −0.0068 (13)
O3 0.0322 (17) 0.0343 (17) 0.0224 (16) −0.0134 (13) 0.0074 (14) −0.0053 (13)
O4 0.0254 (16) 0.0266 (15) 0.0233 (16) −0.0063 (12) 0.0047 (13) −0.0056 (13)
O5 0.0280 (16) 0.0304 (16) 0.0191 (15) −0.0113 (13) 0.0077 (13) −0.0023 (12)
C1 0.020 (2) 0.027 (2) 0.019 (2) −0.0027 (16) −0.0005 (17) −0.0025 (17)
C2 0.020 (2) 0.031 (2) 0.0145 (19) −0.0028 (16) 0.0039 (16) −0.0006 (17)
C3 0.018 (2) 0.029 (2) 0.016 (2) −0.0027 (16) 0.0026 (16) 0.0019 (17)
C4 0.020 (2) 0.028 (2) 0.021 (2) −0.0046 (16) −0.0007 (17) −0.0006 (17)
C5 0.023 (2) 0.027 (2) 0.021 (2) −0.0021 (16) 0.0023 (17) −0.0060 (17)
C6 0.018 (2) 0.030 (2) 0.018 (2) −0.0022 (16) 0.0017 (17) −0.0033 (17)
C7 0.021 (2) 0.031 (2) 0.018 (2) −0.0030 (16) −0.0004 (17) −0.0033 (17)
C8 0.023 (2) 0.031 (2) 0.0118 (19) −0.0037 (16) 0.0018 (17) −0.0010 (16)
C9 0.023 (2) 0.028 (2) 0.021 (2) −0.0063 (17) −0.0005 (18) −0.0028 (17)
C10A 0.029 (9) 0.038 (9) 0.034 (9) −0.010 (7) 0.002 (7) 0.003 (7)
C12A 0.030 (8) 0.040 (9) 0.031 (8) −0.011 (7) 0.002 (6) −0.017 (6)
C10B 0.020 (4) 0.020 (4) 0.018 (4) 0.002 (3) 0.003 (3) 0.003 (3)
C12B 0.016 (4) 0.031 (4) 0.016 (3) −0.013 (3) 0.002 (3) −0.004 (3)
C11 0.028 (2) 0.032 (2) 0.018 (2) −0.0109 (18) 0.0104 (18) −0.0082 (18)
C13 0.017 (2) 0.027 (2) 0.019 (2) −0.0014 (16) 0.0020 (17) −0.0020 (17)
C14 0.025 (2) 0.032 (2) 0.018 (2) −0.0069 (18) 0.0061 (18) −0.0017 (17)
C15 0.028 (2) 0.040 (3) 0.030 (3) −0.002 (2) 0.009 (2) −0.005 (2)
C16 0.048 (3) 0.038 (3) 0.031 (3) 0.006 (2) 0.008 (2) 0.006 (2)
C17 0.025 (2) 0.027 (2) 0.024 (2) −0.0041 (17) 0.0018 (18) −0.0041 (18)
C18 0.023 (2) 0.035 (2) 0.019 (2) −0.0080 (18) 0.0050 (18) 0.0002 (18)

Geometric parameters (Å, °)

Br1—C12B 1.981 (6) C10A—C12A 1.539 (5)
Br1—C12A 1.99 (1) C10A—C11 1.547 (5)
N1—C9 1.334 (6) C10A—H10A 1.000
N1—C1 1.388 (6) C12A—H12A 0.990
N1—C11 1.469 (5) C12A—H12B 0.990
N2—C13 1.363 (5) C10B—C12B 1.535 (5)
N2—C14 1.457 (5) C10B—C11 1.544 (4)
N2—H2A 0.880 C10B—H10B 1.000
O1—C9 1.336 (5) C12B—H12C 0.990
O1—C10A 1.445 (5) C12B—H12D 0.990
O1—C10B 1.465 (4) C11—H11B 0.990
O2—C13 1.212 (5) C11—H11A 0.990
O3—C7 1.263 (5) C11—H11C 0.990
O4—C4 1.369 (5) C11—H11D 0.990
O4—C17 1.442 (5) C14—C16 1.511 (7)
O5—C3 1.361 (5) C14—C15 1.525 (6)
O5—C18 1.433 (5) C14—H14A 1.000
C1—C6 1.403 (6) C15—H15A 0.980
C1—C2 1.403 (6) C15—H15B 0.980
C2—C3 1.387 (6) C15—H15C 0.980
C2—H2B 0.950 C16—H16A 0.980
C3—C4 1.426 (6) C16—H16B 0.980
C4—C5 1.360 (6) C16—H16C 0.980
C5—C6 1.408 (6) C17—H17A 0.980
C5—H5A 0.950 C17—H17B 0.980
C6—C7 1.456 (6) C17—H17C 0.980
C7—C8 1.458 (6) C18—H18A 0.980
C8—C9 1.386 (6) C18—H18B 0.980
C8—C13 1.503 (6) C18—H18C 0.980
C9—N1—C1 122.8 (4) C10B—C12B—H12C 110.7
C9—N1—C11 111.5 (3) Br1—C12B—H12C 110.7
C1—N1—C11 125.6 (3) C10B—C12B—H12D 110.7
C13—N2—C14 120.8 (4) Br1—C12B—H12D 110.7
C13—N2—H2A 119.6 H12C—C12B—H12D 108.8
C14—N2—H2A 119.6 N1—C11—C10B 100.3 (3)
C9—O1—C10A 107.1 (4) N1—C11—C10A 98.6 (4)
C9—O1—C10B 108.5 (3) N1—C11—H11B 112.0
C4—O4—C17 115.8 (3) C10B—C11—H11B 85.6
C3—O5—C18 118.0 (3) C10A—C11—H11B 112.0
N1—C1—C6 117.2 (4) N1—C11—H11A 112.0
N1—C1—C2 121.3 (4) C10B—C11—H11A 134.1
C6—C1—C2 121.5 (4) C10A—C11—H11A 112.0
C3—C2—C1 118.6 (4) H11B—C11—H11A 109.7
C3—C2—H2B 120.7 N1—C11—H11C 111.7
C1—C2—H2B 120.7 C10B—C11—H11C 111.7
O5—C3—C2 124.4 (4) C10A—C11—H11C 135.7
O5—C3—C4 115.1 (4) H11A—C11—H11C 86.1
C2—C3—C4 120.4 (4) N1—C11—H11D 111.7
C5—C4—O4 125.9 (4) C10B—C11—H11D 111.7
C5—C4—C3 119.9 (4) C10A—C11—H11D 86.6
O4—C4—C3 114.2 (4) H11B—C11—H11D 128.5
C4—C5—C6 121.2 (4) H11C—C11—H11D 109.5
C4—C5—H5A 119.4 O2—C13—N2 122.8 (4)
C6—C5—H5A 119.4 O2—C13—C8 123.1 (4)
C1—C6—C5 118.4 (4) N2—C13—C8 114.2 (4)
C1—C6—C7 121.4 (4) N2—C14—C16 110.1 (4)
C5—C6—C7 120.2 (4) N2—C14—C15 108.4 (4)
O3—C7—C6 118.9 (4) C16—C14—C15 110.9 (4)
O3—C7—C8 123.4 (4) N2—C14—H14A 109.1
C6—C7—C8 117.7 (4) C16—C14—H14A 109.1
C9—C8—C7 116.5 (4) C15—C14—H14A 109.1
C9—C8—C13 119.8 (4) C14—C15—H15A 109.5
C7—C8—C13 123.7 (4) C14—C15—H15B 109.5
N1—C9—O1 111.4 (4) H15A—C15—H15B 109.5
N1—C9—C8 124.2 (4) C14—C15—H15C 109.5
O1—C9—C8 124.4 (4) H15A—C15—H15C 109.5
O1—C10A—C12A 105.8 (8) H15B—C15—H15C 109.5
O1—C10A—C11 104.2 (4) C14—C16—H16A 109.5
C12A—C10A—C11 112.4 (9) C14—C16—H16B 109.5
O1—C10A—H10A 111.4 H16A—C16—H16B 109.5
C12A—C10A—H10A 111.4 C14—C16—H16C 109.5
C11—C10A—H10A 111.4 H16A—C16—H16C 109.5
C10A—C12A—Br1 104.3 (8) H16B—C16—H16C 109.5
C10A—C12A—H12A 110.9 O4—C17—H17A 109.5
Br1—C12A—H12A 110.9 O4—C17—H17B 109.5
C10A—C12A—H12B 110.9 H17A—C17—H17B 109.5
Br1—C12A—H12B 110.9 O4—C17—H17C 109.5
H12A—C12A—H12B 108.9 H17A—C17—H17C 109.5
O1—C10B—C12B 104.0 (4) H17B—C17—H17C 109.5
O1—C10B—C11 103.4 (3) O5—C18—H18A 109.5
C12B—C10B—C11 111.4 (5) O5—C18—H18B 109.5
O1—C10B—H10B 112.4 H18A—C18—H18B 109.5
C12B—C10B—H10B 112.4 O5—C18—H18C 109.5
C11—C10B—H10B 112.4 H18A—C18—H18C 109.5
C10B—C12B—Br1 105.1 (4) H18B—C18—H18C 109.5
C9—N1—C1—C6 −0.5 (7) C1—N1—C9—C8 0.0 (7)
C11—N1—C1—C6 178.1 (4) C11—N1—C9—C8 −178.8 (4)
C9—N1—C1—C2 179.2 (4) C10A—O1—C9—N1 −18.1 (7)
C11—N1—C1—C2 −2.2 (7) C10B—O1—C9—N1 13.6 (5)
N1—C1—C2—C3 −179.7 (4) C10A—O1—C9—C8 161.7 (7)
C6—C1—C2—C3 −0.1 (7) C10B—O1—C9—C8 −166.6 (5)
C18—O5—C3—C2 4.1 (6) C7—C8—C9—N1 1.7 (7)
C18—O5—C3—C4 −177.6 (4) C13—C8—C9—N1 −176.6 (4)
C1—C2—C3—O5 178.9 (4) C7—C8—C9—O1 −178.1 (4)
C1—C2—C3—C4 0.7 (6) C13—C8—C9—O1 3.6 (7)
C17—O4—C4—C5 −6.1 (6) C9—O1—C10A—C12A 145.3 (7)
C17—O4—C4—C3 172.8 (4) C9—O1—C10A—C11 26.6 (9)
O5—C3—C4—C5 −179.8 (4) O1—C10A—C12A—Br1 −180.0 (6)
C2—C3—C4—C5 −1.4 (7) C11—C10A—C12A—Br1 −66.9 (9)
O5—C3—C4—O4 1.2 (6) C9—O1—C10B—C12B −138.0 (5)
C2—C3—C4—O4 179.6 (4) C9—O1—C10B—C11 −21.5 (5)
O4—C4—C5—C6 −179.6 (4) O1—C10B—C12B—Br1 178.5 (3)
C3—C4—C5—C6 1.6 (7) C11—C10B—C12B—Br1 67.7 (5)
N1—C1—C6—C5 179.8 (4) C9—N1—C11—C10B −13.9 (5)
C2—C1—C6—C5 0.2 (7) C1—N1—C11—C10B 167.4 (5)
N1—C1—C6—C7 −0.9 (6) C9—N1—C11—C10A 14.8 (7)
C2—C1—C6—C7 179.5 (4) C1—N1—C11—C10A −164.0 (6)
C4—C5—C6—C1 −0.9 (7) O1—C10B—C11—N1 20.3 (5)
C4—C5—C6—C7 179.8 (4) C12B—C10B—C11—N1 131.5 (5)
C1—C6—C7—O3 −179.4 (4) O1—C10A—C11—N1 −24.0 (8)
C5—C6—C7—O3 −0.1 (7) C12A—C10A—C11—N1 −138.1 (8)
C1—C6—C7—C8 2.6 (6) C14—N2—C13—O2 4.3 (7)
C5—C6—C7—C8 −178.2 (4) C14—N2—C13—C8 −174.8 (4)
O3—C7—C8—C9 179.1 (4) C9—C8—C13—O2 0.9 (7)
C6—C7—C8—C9 −2.9 (6) C7—C8—C13—O2 −177.3 (4)
O3—C7—C8—C13 −2.6 (7) C9—C8—C13—N2 180.0 (4)
C6—C7—C8—C13 175.4 (4) C7—C8—C13—N2 1.7 (6)
C1—N1—C9—O1 179.8 (4) C13—N2—C14—C16 79.8 (5)
C11—N1—C9—O1 1.0 (5) C13—N2—C14—C15 −158.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3 0.88 1.91 2.634 (5) 138
C10A—H10A···O3i 1.00 2.23 3.042 137
C12A—H12A···O2ii 0.99 2.33 3.289 164
C12A—H12B···O4iii 0.99 2.41 3.173 134
C12B—H12D···O2ii 0.99 2.30 3.253 162
C17—H17A···O5iv 0.98 2.41 3.380 172

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2166).

References

  1. Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, p. 271. Copenhagen: Munksgaard.
  2. Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767–784. Weinheim: VCH.
  3. Hutcheon, W. L. B. & James, M. N. G. (1977). Acta Cryst. B33, 2228–2232.
  4. Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siemens (1998). XP Siemens Analytical X-ray Division Inc., Karlsruhe, Germany.
  7. Ukrainets, I. V., Bereznyakova, L. V., Turov, A. V. & Shihkina, S. V. (2007a). Khim. Geterotsikl. Soedin. pp. 1034–1042.
  8. Ukrainets, I. V., Sidorenko, L. V., Gorokhova, O. V., Shishkina, S. V. & Turov, A. V. (2007b). Khim. Geterotsikl. Soedin. pp. 736–749.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013378/kp2166sup1.cif

e-64-o1031-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013378/kp2166Isup2.hkl

e-64-o1031-Isup2.hkl (152.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES