Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1040–o1041. doi: 10.1107/S1600536808013056

(4R,5S)-5-Benzyl-4-isopropyl-1,3,4-oxadiazinan-2-one

Lacey D Addison a, Delvis D Dore a, Shawn R Hitchcock a, Gregory M Ferrence a,*
PMCID: PMC2961530  PMID: 21202562

Abstract

The title compound, C13H18N2O2, is an N4-isopropyl-l-phenyl­alanine-based oxadiazinanone. Although the two mol­ecules in the asymmetric unit are oriented appropriately for hydrogen bonding, the distance between the donor and acceptor atoms is large enough to support only weak, if any, hydrogen bonding. The absolute configuration is known based on the known starting compounds in the synthetic procedure.

Related literature

For related literature, see: Burgeson et al. (2004); Casper, Blackburn et al. (2002); Casper, Burgeson et al. (2002); Casper & Hitchcock (2003); Dore et al. (2006); Ferrence et al. (2003); Hitchcock et al. (2004); Hitchcock et al. (2001); Squire et al. (2005); Szczepura et al. (2004); Bruno et al. (2004).graphic file with name e-64-o1040-scheme1.jpg

Experimental

Crystal data

  • C13H18N2O2

  • M r = 234.29

  • Orthorhombic, Inline graphic

  • a = 9.6423 (14) Å

  • b = 11.4974 (17) Å

  • c = 22.600 (3) Å

  • V = 2505.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.43 × 0.23 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan SADABS in SAINT-Plus (Bruker, 2003) T min = 0.965, T max = 0.981

  • 25602 measured reflections

  • 3499 independent reflections

  • 3403 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.133

  • S = 1.32

  • 3499 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013056/sg2243sup1.cif

e-64-o1040-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013056/sg2243Isup2.hkl

e-64-o1040-Isup2.hkl (168.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This material is based upon work supported by the US National Science Foundation (CHE-0348158 to GMF) and the American Chemical Society Petroleum Research Fund (to SRH & GMF). GMF thanks Adam Beitelman (ISU) and Matthias Zeller, Youngstown State University Structure & Chemical Instrumentation Facility, for the data collection and useful discussions. The diffractometer was funded by NSF grant 0087210, Ohio Board of Regents grant CAP-491, and YSU.

supplementary crystallographic information

Comment

The synthesis (Hitchcock et al., 2001), conformational analysis (Casper, Blackburn et al., 2002; Burgeson et al. 2004), and asymmetric applications (Casper & Hitchcock, 2003; Casper, Burgeson et al., 2002; Ferrence et al. 2003; Hitchcock et al. 2004; Hitchcock et al. 2001; Squire et al. 2005; Szczepura et al. 2004) of 3,4,5,6-tetrahydro-2H-1,3,4-oxadiazinan-2-ones have only thoroughly been studied in the last ten years. We have been interested in synthesizing new oxadiazinanones for use as chiral auxillaries in aldol addition reactions. We synthesized the title compound in order to study the conformation that the heterocycle adopts. Herein we report the single-crystal X-ray structure analysis of the N4-isopropyl-L-phenylalanine based oxiadiazinanone.

Other oxadiazinanones have been reported and studied, but the title compound is one of few studied that is not substituted at the N3 position. Other oxadiazinanone structures (Burgeson et al., 2004; Casper, Blackburn et al., 2002; Casper, Burgeson et al., 2002; Ferrence et al., 2003; Hitchcock et al., 2001, 2004) are substituted with a carbonyl at the N3 position. These N3 substituted oxadiazinanones adopt a twist-boat conformation, as does the title compound. This is also consistent with related oxadiazinanones not substituted at the N3 position (Szczepura et al., 2004). The C7B—C5B—N4B—C14B torsion angle is 159.1 (2)°, and the C7A—C5A—N4A—C14A torsion angle is 155.5 (2)°. Previously reported oxadiazinanones with no substitution at the N3 position have torsion angles between 161.79–163.16°. A Mogul (Bruno et al. 2004) geometry check showed all non-H bond angles and distances to be normal. The molecular structure (Fig. 1.) of I includes two independent molecules in the asymmetric unit. The oxadiazinanone moieties are essentially isostructural. The primary difference between the two molecules is the orientation of the benzyl group attached to C5A/B (Figs. 2. and 3.). The respective -56.9 (3)° N4A—C5A—C7B—C8A and -175.5 (2)° N4A—C5A—C7B—C8A torsion angles quantify this difference.

Hydrogen-bonding interactions usually appear to play a key role in the crystal packing of oxadiazinanones (Szczepura et al., 2004). However, it may be that the optimal crystal packing simply happens to yield an arrangement of molecules which are suggestive of a hydrogen bonding motif. That is packing forces other than formation of the weak H-bonding fortuitously lead to the motif. In the title compound, the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations are large enough to support only weak, if any, hydrogen bonding (Fig 4.). This interaction is further illustrated in the Jmol enhanced figure (Fig. 5).

Experimental

The title compound was prepared as previously reported (Dore et al. (2006)).

Refinement

All non-H atoms were refined anisotropically without disorder. All H atoms were initially identified through difference Fourier syntheses then removed and included in the refinement in the riding-model approximation (C–H = 0.95, 0.98, 0.99 and 1.00 Å for Ar–H, CH3 and CH2 and CH; N–H = 0.88 Å; Uiso(H) = 1.2Ueq(C) except for methyl groups, where Uiso(H) = 1.5Ueq(C)). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

The molecular structure of compound (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A Mercury view of the asymmetric unit of (I) highlighting the 2.83 Å N3A—O17B and 2.89 Å N3B—O17A donor to acceptor separations which support only weak, if any, hydrogen bonding.

Fig. 3.

Fig. 3.

A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with H atoms shown in light blue.

Fig. 4.

Fig. 4.

A Mercury overlay of the two independent molecules in the asymmetric unit of (I) with one molecule shown in blue and one shown in violet.

Fig. 5.

Fig. 5.

Jmol enhanced figure of I. The default view shows the basic unit-cell contents. The pair of molecules forming the asymmetric unit and the putative H-bonding pair of molecules may be highlighted when viewing the active enhanced figure.

Crystal data

C13H18N2O2 F000 = 1008
Mr = 234.29 Dx = 1.242 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 8817 reflections
a = 9.6423 (14) Å θ = 2.3–30.5º
b = 11.4974 (17) Å µ = 0.09 mm1
c = 22.600 (3) Å T = 100 (2) K
V = 2505.5 (6) Å3 Block, colourless
Z = 8 0.43 × 0.23 × 0.23 mm

Data collection

Bruker SMART APEX CCD diffractometer 3403 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.041
Monochromator: graphite θmax = 28.3º
ω scans θmin = 1.8º
Absorption correction: multi-scanSADABS in SAINT-Plus (Bruker, 2003) h = −12→12
Tmin = 0.965, Tmax = 0.981 k = −15→15
25602 measured reflections l = −29→30
3499 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full   w = 1/[σ2(Fo2) + (0.0413P)2 + 1.6549P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.060 (Δ/σ)max < 0.001
wR(F2) = 0.133 Δρmax = 0.37 e Å3
S = 1.32 Δρmin = −0.25 e Å3
3499 reflections Extinction correction: none
307 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.5275 (2) 0.74524 (18) 0.71574 (9) 0.0200 (4)
C2A 0.5986 (3) 0.7897 (3) 0.76134 (13) 0.0176 (6)
O17A 0.6692 (2) 0.87684 (18) 0.75304 (9) 0.0213 (4)
N3A 0.5897 (2) 0.7389 (2) 0.81457 (10) 0.0170 (5)
H3A 0.6512 0.7603 0.8412 0.02*
N4A 0.4904 (2) 0.6534 (2) 0.83257 (10) 0.0154 (5)
C5A 0.3806 (3) 0.6483 (2) 0.78779 (12) 0.0165 (5)
H5A 0.3265 0.5752 0.7943 0.02*
C6A 0.4435 (3) 0.6429 (3) 0.72638 (13) 0.0191 (6)
H6A1 0.5015 0.5723 0.7227 0.023*
H6A2 0.3687 0.6385 0.6964 0.023*
C7A 0.2806 (3) 0.7517 (3) 0.79456 (13) 0.0206 (6)
H7A1 0.3317 0.8247 0.7865 0.025*
H7A2 0.2059 0.7447 0.7647 0.025*
C8A 0.2163 (3) 0.7588 (3) 0.85530 (13) 0.0189 (6)
C9A 0.0827 (3) 0.7173 (3) 0.86541 (14) 0.0232 (6)
H9A 0.031 0.686 0.8333 0.028*
C10A 0.0233 (3) 0.7206 (3) 0.92131 (15) 0.0263 (7)
H10A −0.0681 0.6921 0.9273 0.032*
C11A 0.0976 (3) 0.7656 (3) 0.96826 (14) 0.0251 (7)
H11A 0.0584 0.7669 1.0068 0.03*
C12A 0.2293 (3) 0.8086 (3) 0.95870 (15) 0.0281 (7)
H12A 0.2802 0.8407 0.9908 0.034*
C13A 0.2878 (3) 0.8053 (3) 0.90287 (15) 0.0249 (7)
H13A 0.3786 0.8354 0.8971 0.03*
C14A 0.5541 (3) 0.5392 (2) 0.84671 (13) 0.0180 (6)
H14A 0.5723 0.4953 0.8093 0.022*
C15A 0.6894 (3) 0.5566 (3) 0.88013 (14) 0.0250 (7)
H15A 0.7547 0.5999 0.8552 0.037*
H15B 0.7291 0.4808 0.8902 0.037*
H15C 0.6714 0.6006 0.9165 0.037*
C16A 0.4514 (4) 0.4714 (3) 0.88512 (15) 0.0285 (7)
H16A 0.3644 0.4606 0.8633 0.043*
H16B 0.4331 0.5149 0.9216 0.043*
H16C 0.4908 0.3952 0.895 0.043*
O1B 0.8672 (2) 0.98233 (18) 0.94720 (9) 0.0218 (5)
C2B 0.7980 (3) 0.9425 (2) 0.89999 (13) 0.0175 (5)
O17B 0.7047 (2) 0.87193 (19) 0.90751 (9) 0.0221 (5)
N3B 0.8282 (3) 0.9856 (2) 0.84613 (11) 0.0187 (5)
H3B 0.7824 0.955 0.8163 0.022*
N4B 0.9257 (3) 1.0754 (2) 0.83144 (11) 0.0177 (5)
C5B 0.9584 (3) 1.1386 (2) 0.88641 (13) 0.0188 (6)
H5B 1.0451 1.1841 0.8792 0.023*
C6B 0.9879 (3) 1.0537 (2) 0.93632 (14) 0.0200 (6)
H6B1 1.0676 1.0036 0.9256 0.024*
H6B2 1.0123 1.0971 0.9727 0.024*
C7B 0.8430 (3) 1.2258 (3) 0.90152 (14) 0.0216 (6)
H7B1 0.8272 1.2779 0.8673 0.026*
H7B2 0.7558 1.1832 0.9094 0.026*
C8B 0.8812 (3) 1.2979 (2) 0.95530 (14) 0.0205 (6)
C9B 0.9766 (4) 1.3882 (3) 0.95059 (15) 0.0261 (7)
H9B 1.0129 1.4084 0.9129 0.031*
C10B 1.0197 (4) 1.4496 (3) 1.00054 (16) 0.0291 (7)
H10B 1.0845 1.5114 0.9968 0.035*
C11B 0.9680 (4) 1.4202 (3) 1.05520 (17) 0.0325 (8)
H11B 0.9978 1.4613 1.0894 0.039*
C12B 0.8727 (4) 1.3309 (3) 1.06053 (16) 0.0341 (8)
H12B 0.8368 1.3108 1.0983 0.041*
C13B 0.8296 (4) 1.2707 (3) 1.01068 (15) 0.0286 (7)
H13B 0.7636 1.2099 1.0146 0.034*
C14B 1.0493 (3) 1.0225 (3) 0.80199 (13) 0.0207 (6)
H14B 1.0973 0.9692 0.8303 0.025*
C15B 1.0028 (4) 0.9540 (3) 0.74778 (15) 0.0255 (6)
H15D 0.9394 0.8919 0.76 0.038*
H15E 1.084 0.9198 0.7283 0.038*
H15F 0.9553 1.0062 0.7201 0.038*
C16B 1.1483 (4) 1.1180 (3) 0.78295 (15) 0.0320 (8)
H16D 1.1788 1.1619 0.8178 0.048*
H16E 1.101 1.1705 0.7554 0.048*
H16F 1.229 1.0833 0.7634 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0219 (10) 0.0205 (10) 0.0176 (9) −0.0022 (9) −0.0014 (8) 0.0017 (8)
C2A 0.0151 (12) 0.0162 (13) 0.0215 (14) 0.0042 (11) −0.0003 (11) −0.0015 (11)
O17A 0.0237 (10) 0.0186 (10) 0.0217 (10) −0.0034 (9) −0.0026 (9) 0.0017 (9)
N3A 0.0147 (11) 0.0186 (11) 0.0178 (11) −0.0011 (10) −0.0048 (9) −0.0007 (9)
N4A 0.0146 (11) 0.0122 (10) 0.0193 (11) 0.0005 (9) −0.0011 (9) 0.0018 (9)
C5A 0.0141 (12) 0.0171 (12) 0.0182 (13) −0.0037 (11) −0.0020 (10) 0.0000 (11)
C6A 0.0199 (14) 0.0189 (13) 0.0185 (14) −0.0034 (12) −0.0037 (11) −0.0001 (11)
C7A 0.0178 (13) 0.0234 (15) 0.0207 (14) 0.0031 (12) −0.0033 (11) 0.0025 (12)
C8A 0.0175 (13) 0.0149 (13) 0.0243 (14) 0.0059 (11) −0.0035 (11) 0.0008 (11)
C9A 0.0196 (14) 0.0234 (14) 0.0267 (15) −0.0036 (13) −0.0054 (12) −0.0021 (13)
C10A 0.0217 (15) 0.0255 (15) 0.0317 (16) −0.0036 (13) 0.0020 (13) 0.0049 (13)
C11A 0.0286 (16) 0.0246 (15) 0.0221 (14) 0.0080 (14) 0.0000 (13) 0.0029 (12)
C12A 0.0248 (15) 0.0331 (18) 0.0265 (16) 0.0082 (14) −0.0089 (13) −0.0110 (14)
C13A 0.0147 (13) 0.0271 (16) 0.0329 (17) 0.0028 (12) −0.0013 (12) −0.0063 (13)
C14A 0.0232 (14) 0.0139 (12) 0.0169 (13) 0.0039 (11) −0.0021 (11) 0.0013 (10)
C15A 0.0276 (16) 0.0234 (15) 0.0239 (15) 0.0076 (13) −0.0055 (13) 0.0013 (12)
C16A 0.0364 (18) 0.0229 (15) 0.0262 (15) −0.0040 (14) −0.0032 (14) 0.0086 (13)
O1B 0.0249 (11) 0.0187 (10) 0.0218 (10) −0.0014 (9) −0.0009 (9) 0.0005 (9)
C2B 0.0183 (13) 0.0134 (12) 0.0207 (13) 0.0045 (11) 0.0003 (11) −0.0028 (11)
O17B 0.0254 (11) 0.0210 (10) 0.0197 (10) −0.0059 (9) 0.0037 (9) −0.0019 (8)
N3B 0.0194 (12) 0.0183 (12) 0.0185 (11) −0.0044 (10) −0.0018 (10) 0.0001 (9)
N4B 0.0174 (11) 0.0136 (10) 0.0222 (12) −0.0026 (9) −0.0005 (9) 0.0021 (9)
C5B 0.0183 (13) 0.0146 (12) 0.0233 (14) −0.0044 (11) −0.0033 (11) 0.0017 (11)
C6B 0.0190 (13) 0.0160 (12) 0.0249 (15) 0.0004 (11) −0.0045 (12) 0.0010 (11)
C7B 0.0202 (13) 0.0159 (13) 0.0286 (15) 0.0020 (11) −0.0040 (12) −0.0003 (12)
C8B 0.0190 (13) 0.0141 (13) 0.0284 (15) 0.0063 (11) −0.0065 (12) −0.0013 (11)
C9B 0.0283 (16) 0.0179 (14) 0.0319 (17) 0.0011 (13) −0.0076 (14) 0.0023 (13)
C10B 0.0257 (16) 0.0160 (14) 0.046 (2) 0.0012 (13) −0.0127 (15) −0.0024 (14)
C11B 0.0362 (19) 0.0232 (15) 0.0382 (19) 0.0108 (15) −0.0117 (16) −0.0114 (14)
C12B 0.0343 (18) 0.0376 (19) 0.0305 (17) 0.0087 (16) 0.0041 (15) −0.0045 (15)
C13B 0.0257 (15) 0.0237 (17) 0.0365 (18) 0.0026 (14) 0.0035 (14) −0.0045 (14)
C14B 0.0161 (13) 0.0246 (14) 0.0215 (14) 0.0050 (12) 0.0007 (11) 0.0062 (12)
C15B 0.0250 (14) 0.0223 (14) 0.0291 (15) −0.0023 (13) 0.0086 (12) −0.0022 (13)
C16B 0.0276 (16) 0.045 (2) 0.0236 (16) −0.0147 (16) 0.0054 (13) −0.0039 (15)

Geometric parameters (Å, °)

O1A—C2A 1.339 (3) O1B—C2B 1.339 (3)
O1A—C6A 1.449 (3) O1B—C6B 1.444 (4)
C2A—O17A 1.226 (4) C2B—O17B 1.223 (4)
C2A—N3A 1.340 (4) C2B—N3B 1.346 (4)
N3A—N4A 1.431 (3) N3B—N4B 1.435 (3)
N3A—H3A 0.88 N3B—H3B 0.88
N4A—C5A 1.466 (3) N4B—C5B 1.474 (4)
N4A—C14A 1.484 (3) N4B—C14B 1.494 (4)
C5A—C6A 1.516 (4) C5B—C6B 1.519 (4)
C5A—C7A 1.538 (4) C5B—C7B 1.536 (4)
C5A—H5A 1 C5B—H5B 1
C6A—H6A1 0.99 C6B—H6B1 0.99
C6A—H6A2 0.99 C6B—H6B2 0.99
C7A—C8A 1.508 (4) C7B—C8B 1.517 (4)
C7A—H7A1 0.99 C7B—H7B1 0.99
C7A—H7A2 0.99 C7B—H7B2 0.99
C8A—C13A 1.385 (4) C8B—C13B 1.383 (5)
C8A—C9A 1.393 (4) C8B—C9B 1.391 (4)
C9A—C10A 1.388 (4) C9B—C10B 1.394 (5)
C9A—H9A 0.95 C9B—H9B 0.95
C10A—C11A 1.381 (5) C10B—C11B 1.374 (5)
C10A—H10A 0.95 C10B—H10B 0.95
C11A—C12A 1.380 (5) C11B—C12B 1.383 (5)
C11A—H11A 0.95 C11B—H11B 0.95
C12A—C13A 1.383 (5) C12B—C13B 1.386 (5)
C12A—H12A 0.95 C12B—H12B 0.95
C13A—H13A 0.95 C13B—H13B 0.95
C14A—C15A 1.521 (4) C14B—C16B 1.517 (4)
C14A—C16A 1.530 (4) C14B—C15B 1.524 (5)
C14A—H14A 1 C14B—H14B 1
C15A—H15A 0.98 C15B—H15D 0.98
C15A—H15B 0.98 C15B—H15E 0.98
C15A—H15C 0.98 C15B—H15F 0.98
C16A—H16A 0.98 C16B—H16D 0.98
C16A—H16B 0.98 C16B—H16E 0.98
C16A—H16C 0.98 C16B—H16F 0.98
C2A—O1A—C6A 117.9 (2) C2B—O1B—C6B 117.4 (2)
O17A—C2A—O1A 118.6 (3) O17B—C2B—O1B 118.9 (3)
O17A—C2A—N3A 121.9 (3) O17B—C2B—N3B 121.9 (3)
O1A—C2A—N3A 119.5 (3) O1B—C2B—N3B 119.1 (3)
C2A—N3A—N4A 126.7 (2) C2B—N3B—N4B 128.0 (2)
C2A—N3A—H3A 116.7 C2B—N3B—H3B 116
N4A—N3A—H3A 116.7 N4B—N3B—H3B 116
N3A—N4A—C5A 108.3 (2) N3B—N4B—C5B 107.4 (2)
N3A—N4A—C14A 113.1 (2) N3B—N4B—C14B 109.5 (2)
C5A—N4A—C14A 114.3 (2) C5B—N4B—C14B 114.0 (2)
N4A—C5A—C6A 110.2 (2) N4B—C5B—C6B 110.4 (2)
N4A—C5A—C7A 110.7 (2) N4B—C5B—C7B 110.8 (2)
C6A—C5A—C7A 111.9 (2) C6B—C5B—C7B 113.0 (3)
N4A—C5A—H5A 108 N4B—C5B—H5B 107.5
C6A—C5A—H5A 108 C6B—C5B—H5B 107.5
C7A—C5A—H5A 108 C7B—C5B—H5B 107.5
O1A—C6A—C5A 110.1 (2) O1B—C6B—C5B 109.9 (2)
O1A—C6A—H6A1 109.6 O1B—C6B—H6B1 109.7
C5A—C6A—H6A1 109.6 C5B—C6B—H6B1 109.7
O1A—C6A—H6A2 109.6 O1B—C6B—H6B2 109.7
C5A—C6A—H6A2 109.6 C5B—C6B—H6B2 109.7
H6A1—C6A—H6A2 108.2 H6B1—C6B—H6B2 108.2
C8A—C7A—C5A 112.9 (2) C8B—C7B—C5B 111.1 (2)
C8A—C7A—H7A1 109 C8B—C7B—H7B1 109.4
C5A—C7A—H7A1 109 C5B—C7B—H7B1 109.4
C8A—C7A—H7A2 109 C8B—C7B—H7B2 109.4
C5A—C7A—H7A2 109 C5B—C7B—H7B2 109.4
H7A1—C7A—H7A2 107.8 H7B1—C7B—H7B2 108
C13A—C8A—C9A 117.8 (3) C13B—C8B—C9B 118.4 (3)
C13A—C8A—C7A 121.5 (3) C13B—C8B—C7B 120.9 (3)
C9A—C8A—C7A 120.7 (3) C9B—C8B—C7B 120.5 (3)
C10A—C9A—C8A 121.4 (3) C8B—C9B—C10B 120.8 (3)
C10A—C9A—H9A 119.3 C8B—C9B—H9B 119.6
C8A—C9A—H9A 119.3 C10B—C9B—H9B 119.6
C11A—C10A—C9A 119.7 (3) C11B—C10B—C9B 119.7 (3)
C11A—C10A—H10A 120.1 C11B—C10B—H10B 120.2
C9A—C10A—H10A 120.1 C9B—C10B—H10B 120.2
C12A—C11A—C10A 119.4 (3) C10B—C11B—C12B 120.1 (3)
C12A—C11A—H11A 120.3 C10B—C11B—H11B 119.9
C10A—C11A—H11A 120.3 C12B—C11B—H11B 119.9
C11A—C12A—C13A 120.6 (3) C11B—C12B—C13B 119.9 (3)
C11A—C12A—H12A 119.7 C11B—C12B—H12B 120
C13A—C12A—H12A 119.7 C13B—C12B—H12B 120
C12A—C13A—C8A 121.0 (3) C8B—C13B—C12B 121.0 (3)
C12A—C13A—H13A 119.5 C8B—C13B—H13B 119.5
C8A—C13A—H13A 119.5 C12B—C13B—H13B 119.5
N4A—C14A—C15A 110.2 (2) N4B—C14B—C16B 109.5 (3)
N4A—C14A—C16A 107.8 (2) N4B—C14B—C15B 109.5 (2)
C15A—C14A—C16A 109.9 (2) C16B—C14B—C15B 109.3 (3)
N4A—C14A—H14A 109.7 N4B—C14B—H14B 109.5
C15A—C14A—H14A 109.7 C16B—C14B—H14B 109.5
C16A—C14A—H14A 109.7 C15B—C14B—H14B 109.5
C14A—C15A—H15A 109.5 C14B—C15B—H15D 109.5
C14A—C15A—H15B 109.5 C14B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C14A—C15A—H15C 109.5 C14B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C14A—C16A—H16A 109.5 C14B—C16B—H16D 109.5
C14A—C16A—H16B 109.5 C14B—C16B—H16E 109.5
H16A—C16A—H16B 109.5 H16D—C16B—H16E 109.5
C14A—C16A—H16C 109.5 C14B—C16B—H16F 109.5
H16A—C16A—H16C 109.5 H16D—C16B—H16F 109.5
H16B—C16A—H16C 109.5 H16E—C16B—H16F 109.5
C6A—O1A—C2A—O17A −179.4 (2) C6B—O1B—C2B—O17B 172.3 (2)
C6A—O1A—C2A—N3A −0.1 (4) C6B—O1B—C2B—N3B −11.2 (4)
O17A—C2A—N3A—N4A 166.0 (3) O17B—C2B—N3B—N4B 174.2 (3)
O1A—C2A—N3A—N4A −13.3 (4) O1B—C2B—N3B—N4B −2.2 (4)
C2A—N3A—N4A—C5A −12.3 (4) C2B—N3B—N4B—C5B −17.0 (4)
C2A—N3A—N4A—C14A 115.5 (3) C2B—N3B—N4B—C14B 107.2 (3)
N3A—N4A—C5A—C6A 47.0 (3) N3B—N4B—C5B—C6B 46.5 (3)
C14A—N4A—C5A—C6A −80.2 (3) C14B—N4B—C5B—C6B −75.0 (3)
N3A—N4A—C5A—C7A −77.3 (3) N3B—N4B—C5B—C7B −79.5 (3)
C14A—N4A—C5A—C7A 155.5 (2) C14B—N4B—C5B—C7B 159.1 (2)
C2A—O1A—C6A—C5A 35.5 (3) C2B—O1B—C6B—C5B 41.9 (3)
N4A—C5A—C6A—O1A −60.1 (3) N4B—C5B—C6B—O1B −61.0 (3)
C7A—C5A—C6A—O1A 63.5 (3) C7B—C5B—C6B—O1B 63.7 (3)
N4A—C5A—C7A—C8A −56.9 (3) N4B—C5B—C7B—C8B −175.5 (2)
C6A—C5A—C7A—C8A 179.9 (2) C6B—C5B—C7B—C8B 60.0 (3)
C5A—C7A—C8A—C13A 79.7 (4) C5B—C7B—C8B—C13B −99.3 (3)
C5A—C7A—C8A—C9A −99.6 (3) C5B—C7B—C8B—C9B 76.3 (3)
C13A—C8A—C9A—C10A −0.9 (5) C13B—C8B—C9B—C10B 0.3 (5)
C7A—C8A—C9A—C10A 178.4 (3) C7B—C8B—C9B—C10B −175.4 (3)
C8A—C9A—C10A—C11A −0.2 (5) C8B—C9B—C10B—C11B 0.4 (5)
C9A—C10A—C11A—C12A 1.1 (5) C9B—C10B—C11B—C12B −0.6 (5)
C10A—C11A—C12A—C13A −1.0 (5) C10B—C11B—C12B—C13B 0.2 (5)
C11A—C12A—C13A—C8A −0.2 (5) C9B—C8B—C13B—C12B −0.7 (5)
C9A—C8A—C13A—C12A 1.1 (5) C7B—C8B—C13B—C12B 175.0 (3)
C7A—C8A—C13A—C12A −178.3 (3) C11B—C12B—C13B—C8B 0.5 (5)
N3A—N4A—C14A—C15A 40.3 (3) N3B—N4B—C14B—C16B 176.4 (2)
C5A—N4A—C14A—C15A 164.9 (2) C5B—N4B—C14B—C16B −63.2 (3)
N3A—N4A—C14A—C16A 160.2 (2) N3B—N4B—C14B—C15B 56.5 (3)
C5A—N4A—C14A—C16A −75.2 (3) C5B—N4B—C14B—C15B 176.9 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2243).

References

  1. Bruker (2003). SMART-Plus and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci.44, 2133–2144. [DOI] [PubMed]
  3. Burgeson, J. R., Renner, M. K., Hardt, I., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2004). J. Org. Chem.69, 727–734. [DOI] [PubMed]
  4. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  5. Casper, D. M., Blackburn, J. R., Maroules, C. D., Brady, T., Esken, J. M., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2002). J. Org. Chem.67, 8871–8876. [DOI] [PubMed]
  6. Casper, D. M., Burgeson, J. R., Esken, J. M., Ferrence, G. M. & Hitchcock, S. R. (2002). Org. Lett.4, 3739–3742. [DOI] [PubMed]
  7. Casper, D. M. & Hitchcock, S. R. (2003). Tetrahedron Asymmetry, 14, 517–521.
  8. Dore, D. D., Burgeson, J. R., Davis, R. A. & Hitchcock, S. R. (2006). Tetrahedron:Asymmetry.17, 2386–2392.
  9. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  10. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  11. Ferrence, G. M., Esken, J. M., Blackburn, J. R. & Hitchcock, S. R. (2003). Acta Cryst. E59, o212–o214.
  12. Hitchcock, S. R., Casper, D. M., Vaughn, J. F., Finefield, J. M., Ferrence, G. M. & Esken, J. M. (2004). J. Org. Chem.69, 714–718. [DOI] [PubMed]
  13. Hitchcock, S. R., Nora, G. P., Casper, D. M., Squire, M. D., Maroules, C. D., Ferrence, G. M., Szczepura, L. F. & Standard, J. M. (2001). Tetrahedron, 57, 9789–9798.
  14. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Squire, M. D., Davis, R. A., Chianakas, K. A., Ferrence, G. M., Standard, J. M. & Hitchcock, S. R. (2005). Tetrahedron Asymmetry, 16, 1047–1053.
  17. Szczepura, L. F., Hitchcock, S. R. & Nora, G. P. (2004). Acta Cryst. E60, o1467–o1469.
  18. Westrip, S. P. (2008). publCIF. In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013056/sg2243sup1.cif

e-64-o1040-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013056/sg2243Isup2.hkl

e-64-o1040-Isup2.hkl (168.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES