Abstract
The title compound, C19H22N2O4, was synthesized by the reaction of 2′-hydroxyacetophenone with 1,3-bis(aminooxy)propane in ethanol. Intramolecular O—H⋯N and weak C—H⋯O hydrogen bonds stabilize the three-dimensional structure. A twofold rotation axis passes through the molecule.
Related literature
For related literature, see: Atkins et al. (1985 ▶); Atwood (1997 ▶); Costes et al. (2000 ▶); Dong & Feng (2006 ▶); Dong et al. (2006a
▶,b
▶, 2007a
▶,b
▶,c
▶,d
▶); Duan et al. (2007 ▶); Katsuki (1995 ▶); Lacroix (2001 ▶); Venkataramanan et al. (2005 ▶); Yu et al. (2008 ▶); Zhang et al. (2007 ▶).
Experimental
Crystal data
C19H22N2O4
M r = 342.39
Orthorhombic,
a = 7.4595 (15) Å
b = 25.459 (2) Å
c = 4.5938 (8) Å
V = 872.4 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.09 mm−1
T = 298 (2) K
0.40 × 0.19 × 0.17 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.964, T max = 0.985
3761 measured reflections
880 independent reflections
601 reflections with I > 2σ(I)
R int = 0.080
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.162
S = 1.12
880 reflections
114 parameters
1 restraint
H-atom parameters constrained
Δρmax = 0.17 e Å−3
Δρmin = −0.20 e Å−3
Data collection: SMART (Siemens, 1996 ▶); cell refinement: SAINT (Siemens, 1996 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012701/hg2386sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012701/hg2386Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
O2—H2⋯N1 | 0.82 | 1.85 | 2.570 (5) | 146 |
C3—H3A⋯O1 | 0.96 | 2.17 | 2.603 (6) | 106 |
Acknowledgments
Support of this work by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A) is gratefully acknowledged.
supplementary crystallographic information
Comment
Salen-type compounds have been intensively used as versatile chelating ligands in the formation of transition metal complexes (Yu et al., 2008). Some of them or their metal complexes are used in various organic reaction processes as catalysts (Venkataramanan et al., 2005), models of reaction centers of metalloenzymes (Katsuki et al., 1995), have fascinating magnetic properties (Costes et al., 2000) and are nonlinear optical materials (Lacroix et al., 2001). They can also be used as biological models in understanding the structure of biomolecules and biological processes (Atkins et al., 1985, Atwood et al., 1997). Most of their important features of these compounds are their preparative accessibility, diversity and structural variability, which make them more attractive.
In recent years, we have been very much interested in the synthesis and study of salen-type bisoxime derivatives, such as 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]dinaphthol (Dong et al., 2006a), 4,4'-dibromo-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Dong & Feng, 2006), 4,4'-dibromo-2,2'-[(1,3-propylene) dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2006b), 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007a), 4,4'-dichloro-2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007b), 4,4'6,6'-tetra(tert-butyl)-2,2'-[(1,4-butylene)dioxybis (nitrilomethylidyne)]diphenol (Dong et al., 2007c), 2,2'-[(1,4-butylene)dioxybis(nitriloethylidyne)]diphenol (Dong et al., 2007d), 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007), and 5,5'-bis(diethylamino)-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Zhang et al., 2007). In this paper, a novel bisoxime ligand, 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol (I) was designed and synthesized, and shown in Fig. 1.
The single-crystal structure of (I) is built up by discrete C19H22N2O4 molecules (Fig. 1), in which all bond lengths are in normal ranges. There is a crystallographic twofold rotation axis passing through the middle point (symmetry code: -x, -y, z) of the C—C—C unit. The molecule adopts a trans conguration in which two phenoldoxime moieties adopts an extended form, where the oxime, methyl groups and phenolic alcohols lie in trans positions relative to the C2 atom in the N—-O—CH2—CH2—CH2—O—N linkage, which is similar to what is observed in our previously reported salen-type bisoxime of 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007). There is an intramolecular O—H···N hydrogen bond between the N1 atom and the hydroxy proton (Table 1) generating a six membered ring, which with weak C—H···O intermolecular hydrogen bonds, stabilizes the three-dimensional structure of (I).
Experimental
2,2'-[(Propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2007d). To an ethanol solution (5 ml) of 2'-hydroxyacetophenone (280.9 mg, 2.01 mmol) was added an ethanol (3 ml) solution of 1,3-bis(aminooxy)propane (105.5 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 3 h. After cool to room temperature, the precipitate was formed, which was filtered, and washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under vacuum and to yield 64.90 mg of the title compound. Yield, 19.1%. mp. 363–363.5 K. Anal. Calc. for C19H22N2O4: C, 66.65; H, 6.48; N, 8.18. Found: C, 66.76; H, 6.39; N, 7.97. Colorless needle-shaped single crystals suitable for X-ray diffraction studies were obtained after three months by slow evaporation from an ethanol solution (10 ml) of 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol.
Refinement
H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH),O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). The hydroxyl protons were located directly from a Fourier map.
Figures
Fig. 1.
Molecule structure of (I) possessing a crystallographic twofold rotation axis passing through the middle point of the C—C—C unit (symmetry code: -x+1, -y, z), Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
Crystal data
C19H22N2O4 | F000 = 364 |
Mr = 342.39 | Dx = 1.303 Mg m−3 |
Orthorhombic, Pba2 | Mo Kα radiation λ = 0.71073 Å |
Hall symbol: P 2 -2ab | Cell parameters from 1047 reflections |
a = 7.4595 (15) Å | θ = 2.4–22.9º |
b = 25.459 (2) Å | µ = 0.09 mm−1 |
c = 4.5938 (8) Å | T = 298 (2) K |
V = 872.4 (2) Å3 | Needle-shaped, colorless |
Z = 2 | 0.40 × 0.19 × 0.17 mm |
Data collection
Bruker SMART CCD area-detector diffractometer | 880 independent reflections |
Radiation source: fine-focus sealed tube | 601 reflections with I > 2σ(I) |
Monochromator: graphite | Rint = 0.080 |
T = 298(2) K | θmax = 25.0º |
φ and ω scans | θmin = 1.6º |
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) | h = −8→4 |
Tmin = 0.964, Tmax = 0.985 | k = −30→28 |
3761 measured reflections | l = −5→5 |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.162 | w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
880 reflections | Δρmax = 0.18 e Å−3 |
114 parameters | Δρmin = −0.20 e Å−3 |
1 restraint | Extinction correction: none |
Primary atom site location: structure-invariant direct methods |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.7665 (5) | 0.07883 (13) | 0.2794 (9) | 0.0424 (10) | |
O1 | 0.6235 (4) | 0.06405 (11) | 0.0997 (8) | 0.0497 (10) | |
O2 | 1.0675 (4) | 0.06514 (11) | 0.5410 (10) | 0.0613 (12) | |
H2 | 0.9857 | 0.0579 | 0.4284 | 0.092* | |
C1 | 0.6621 (6) | 0.01443 (16) | −0.0329 (12) | 0.0447 (13) | |
H1A | 0.6845 | −0.0120 | 0.1148 | 0.054* | |
H1B | 0.7671 | 0.0171 | −0.1564 | 0.054* | |
C2 | 0.5000 | 0.0000 | −0.2107 (16) | 0.0479 (18) | |
H2A | 0.5305 | −0.0294 | −0.3353 | 0.058* | 0.50 |
H2B | 0.4695 | 0.0294 | −0.3353 | 0.058* | 0.50 |
C3 | 0.5696 (7) | 0.15361 (18) | 0.3585 (17) | 0.0660 (17) | |
H3A | 0.5088 | 0.1406 | 0.1891 | 0.099* | |
H3B | 0.5989 | 0.1900 | 0.3308 | 0.099* | |
H3C | 0.4931 | 0.1500 | 0.5254 | 0.099* | |
C4 | 0.7390 (6) | 0.12265 (17) | 0.4060 (10) | 0.0406 (12) | |
C5 | 0.8802 (6) | 0.14197 (16) | 0.5999 (11) | 0.0380 (11) | |
C6 | 1.0350 (6) | 0.11254 (15) | 0.6663 (11) | 0.0396 (12) | |
C7 | 1.1585 (6) | 0.1310 (2) | 0.8622 (13) | 0.0540 (15) | |
H7 | 1.2586 | 0.1107 | 0.9065 | 0.065* | |
C8 | 1.1363 (6) | 0.1787 (2) | 0.9934 (16) | 0.0582 (15) | |
H8 | 1.2207 | 0.1908 | 1.1263 | 0.070* | |
C9 | 0.9884 (8) | 0.2086 (2) | 0.9277 (16) | 0.0649 (18) | |
H9 | 0.9733 | 0.2414 | 1.0135 | 0.078* | |
C10 | 0.8645 (7) | 0.19013 (18) | 0.7369 (13) | 0.0521 (15) | |
H10 | 0.7646 | 0.2108 | 0.6966 | 0.063* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.038 (2) | 0.047 (2) | 0.043 (2) | −0.0020 (17) | −0.005 (2) | 0.002 (2) |
O1 | 0.0458 (18) | 0.0516 (19) | 0.052 (2) | −0.0039 (14) | −0.0123 (19) | −0.0063 (18) |
O2 | 0.053 (2) | 0.054 (2) | 0.077 (3) | 0.0138 (15) | −0.018 (2) | −0.0045 (19) |
C1 | 0.048 (3) | 0.041 (2) | 0.045 (3) | −0.004 (2) | 0.005 (3) | −0.001 (2) |
C2 | 0.068 (5) | 0.046 (3) | 0.030 (4) | −0.007 (3) | 0.000 | 0.000 |
C3 | 0.051 (3) | 0.060 (3) | 0.087 (5) | 0.009 (2) | −0.021 (4) | −0.015 (3) |
C4 | 0.038 (2) | 0.042 (2) | 0.042 (3) | 0.000 (2) | −0.005 (2) | 0.004 (2) |
C5 | 0.035 (2) | 0.045 (2) | 0.034 (3) | −0.001 (2) | −0.001 (2) | 0.004 (2) |
C6 | 0.035 (2) | 0.042 (2) | 0.042 (3) | −0.002 (2) | −0.002 (2) | 0.010 (2) |
C7 | 0.036 (3) | 0.066 (3) | 0.060 (4) | 0.002 (2) | −0.015 (3) | 0.009 (3) |
C8 | 0.046 (3) | 0.072 (3) | 0.057 (4) | −0.015 (3) | −0.011 (3) | −0.001 (3) |
C9 | 0.057 (3) | 0.056 (3) | 0.082 (5) | −0.003 (3) | −0.017 (4) | −0.016 (3) |
C10 | 0.043 (3) | 0.056 (3) | 0.057 (4) | 0.006 (2) | −0.004 (3) | 0.003 (3) |
Geometric parameters (Å, °)
N1—C4 | 1.275 (5) | C3—H3B | 0.9600 |
N1—O1 | 1.400 (5) | C3—H3C | 0.9600 |
O1—C1 | 1.432 (5) | C4—C5 | 1.464 (6) |
O2—C6 | 1.359 (5) | C5—C10 | 1.383 (6) |
O2—H2 | 0.8200 | C5—C6 | 1.410 (6) |
C1—C2 | 1.505 (6) | C6—C7 | 1.370 (7) |
C1—H1A | 0.9700 | C7—C8 | 1.366 (7) |
C1—H1B | 0.9700 | C7—H7 | 0.9300 |
C2—C1i | 1.505 (6) | C8—C9 | 1.374 (7) |
C2—H2A | 0.9700 | C8—H8 | 0.9300 |
C2—H2B | 0.9700 | C9—C10 | 1.358 (8) |
C3—C4 | 1.505 (6) | C9—H9 | 0.9300 |
C3—H3A | 0.9600 | C10—H10 | 0.9300 |
C4—N1—O1 | 112.4 (3) | N1—C4—C5 | 117.1 (4) |
N1—O1—C1 | 109.5 (3) | N1—C4—C3 | 121.8 (4) |
C6—O2—H2 | 109.5 | C5—C4—C3 | 121.1 (4) |
O1—C1—C2 | 106.5 (3) | C10—C5—C6 | 116.2 (4) |
O1—C1—H1A | 110.4 | C10—C5—C4 | 120.9 (4) |
C2—C1—H1A | 110.4 | C6—C5—C4 | 122.8 (4) |
O1—C1—H1B | 110.4 | O2—C6—C7 | 117.6 (4) |
C2—C1—H1B | 110.4 | O2—C6—C5 | 121.7 (4) |
H1A—C1—H1B | 108.6 | C7—C6—C5 | 120.7 (4) |
C1—C2—C1i | 114.3 (6) | C8—C7—C6 | 120.8 (5) |
C1—C2—H2A | 108.7 | C8—C7—H7 | 119.6 |
C1i—C2—H2A | 108.7 | C6—C7—H7 | 119.6 |
C1—C2—H2B | 108.7 | C7—C8—C9 | 119.6 (5) |
C1i—C2—H2B | 108.7 | C7—C8—H8 | 120.2 |
H2A—C2—H2B | 107.6 | C9—C8—H8 | 120.2 |
C4—C3—H3A | 109.5 | C10—C9—C8 | 119.7 (5) |
C4—C3—H3B | 109.5 | C10—C9—H9 | 120.1 |
H3A—C3—H3B | 109.5 | C8—C9—H9 | 120.1 |
C4—C3—H3C | 109.5 | C9—C10—C5 | 122.9 (5) |
H3A—C3—H3C | 109.5 | C9—C10—H10 | 118.5 |
H3B—C3—H3C | 109.5 | C5—C10—H10 | 118.5 |
C4—N1—O1—C1 | −179.4 (4) | C4—C5—C6—O2 | 3.6 (7) |
N1—O1—C1—C2 | 177.5 (4) | C10—C5—C6—C7 | 1.7 (7) |
O1—C1—C2—C1i | −70.3 (3) | C4—C5—C6—C7 | −176.2 (4) |
O1—N1—C4—C5 | 180.0 (3) | O2—C6—C7—C8 | 178.9 (5) |
O1—N1—C4—C3 | −0.3 (7) | C5—C6—C7—C8 | −1.3 (8) |
N1—C4—C5—C10 | 177.4 (5) | C6—C7—C8—C9 | −0.1 (9) |
C3—C4—C5—C10 | −2.3 (7) | C7—C8—C9—C10 | 1.1 (10) |
N1—C4—C5—C6 | −4.9 (6) | C8—C9—C10—C5 | −0.7 (9) |
C3—C4—C5—C6 | 175.4 (5) | C6—C5—C10—C9 | −0.7 (8) |
C10—C5—C6—O2 | −178.6 (4) | C4—C5—C10—C9 | 177.2 (5) |
Symmetry codes: (i) −x+1, −y, z.
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.85 | 2.570 (5) | 146 |
C3—H3A···O1 | 0.96 | 2.17 | 2.603 (6) | 106 |
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2386).
References
- Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem.24, 127–134.
- Atwood, D. A. (1997). Coord. Chem. Rev.165, 267–296.
- Costes, J.-P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem.39, 165–168. [DOI] [PubMed]
- Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007a). Z. Kristallogr. New Cryst. Struct.222, 327–328.
- Dong, W. K., Duan, J. G., Wu, H. L., Shi, J. Y. & Yu, T. Z. (2006a). Z. Kristallogr. New Cryst. Struct.221, 555–556.
- Dong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577–o3578.
- Dong, W. K., Feng, J. H. & Yang, X. Q. (2006b). Z. Kristallogr. New Cryst. Struct.221, 447–448.
- Dong, W. K., Feng, J. H. & Yang, X. Q. (2007c). Z. Kristallogr. New Cryst. Struct.222, 50–52.
- Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007d). Z. Kristallogr. New Cryst. Struct.222, 289–290.
- Dong, W. K., Shi, J. Y., Sun, Y. X., Wang, L., Duan, J. G., Zhong, J. K. & Xu, L. (2007b). Anal. Sci.23, x167–x168.
- Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.
- Katsuki, T. (1995). Coord. Chem. Rev.140, 189–214.
- Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Venkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev.249, 1249–1268.
- Yu, T. Z., Zhang, K., Zhao, Y., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. & Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233–240.
- Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012701/hg2386sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012701/hg2386Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report