Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1098. doi: 10.1107/S1600536808012701

2,2′-[1,1′-(Propane-1,3-diyldioxy­dinitrilo)diethyl­idyne]diphenol

Wen-Kui Dong a,*, Xue-Ni He a, Jin-Kui Zhong a, Xiao Chen a, Tian-Zhi Yu b
PMCID: PMC2961531  PMID: 21202612

Abstract

The title compound, C19H22N2O4, was synthesized by the reaction of 2′-hydroxy­acetophenone with 1,3-bis­(amino­oxy)propane in ethanol. Intra­molecular O—H⋯N and weak C—H⋯O hydrogen bonds stabilize the three-dimensional structure. A twofold rotation axis passes through the molecule.

Related literature

For related literature, see: Atkins et al. (1985); Atwood (1997); Costes et al. (2000); Dong & Feng (2006); Dong et al. (2006a ,b , 2007a ,b ,c ,d ); Duan et al. (2007); Katsuki (1995); Lacroix (2001); Venkataramanan et al. (2005); Yu et al. (2008); Zhang et al. (2007).graphic file with name e-64-o1098-scheme1.jpg

Experimental

Crystal data

  • C19H22N2O4

  • M r = 342.39

  • Orthorhombic, Inline graphic

  • a = 7.4595 (15) Å

  • b = 25.459 (2) Å

  • c = 4.5938 (8) Å

  • V = 872.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.40 × 0.19 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.964, T max = 0.985

  • 3761 measured reflections

  • 880 independent reflections

  • 601 reflections with I > 2σ(I)

  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.162

  • S = 1.12

  • 880 reflections

  • 114 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012701/hg2386sup1.cif

e-64-o1098-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012701/hg2386Isup2.hkl

e-64-o1098-Isup2.hkl (43.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.85 2.570 (5) 146
C3—H3A⋯O1 0.96 2.17 2.603 (6) 106

Acknowledgments

Support of this work by the Foundation of the Education Department of Gansu Province (No. 0604–01) and the ‘Qing Lan’ Talent Engineering Funds of Lanzhou Jiaotong University (No. QL-03–01 A) is gratefully acknowledged.

supplementary crystallographic information

Comment

Salen-type compounds have been intensively used as versatile chelating ligands in the formation of transition metal complexes (Yu et al., 2008). Some of them or their metal complexes are used in various organic reaction processes as catalysts (Venkataramanan et al., 2005), models of reaction centers of metalloenzymes (Katsuki et al., 1995), have fascinating magnetic properties (Costes et al., 2000) and are nonlinear optical materials (Lacroix et al., 2001). They can also be used as biological models in understanding the structure of biomolecules and biological processes (Atkins et al., 1985, Atwood et al., 1997). Most of their important features of these compounds are their preparative accessibility, diversity and structural variability, which make them more attractive.

In recent years, we have been very much interested in the synthesis and study of salen-type bisoxime derivatives, such as 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]dinaphthol (Dong et al., 2006a), 4,4'-dibromo-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Dong & Feng, 2006), 4,4'-dibromo-2,2'-[(1,3-propylene) dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2006b), 2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007a), 4,4'-dichloro-2,2'-[(1,4-butylene)dioxybis(nitrilomethylidyne)]diphenol (Dong et al., 2007b), 4,4'6,6'-tetra(tert-butyl)-2,2'-[(1,4-butylene)dioxybis (nitrilomethylidyne)]diphenol (Dong et al., 2007c), 2,2'-[(1,4-butylene)dioxybis(nitriloethylidyne)]diphenol (Dong et al., 2007d), 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007), and 5,5'-bis(diethylamino)-2,2'-[ethylenedioxybis(nitrilomethylidyne)]diphenol (Zhang et al., 2007). In this paper, a novel bisoxime ligand, 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol (I) was designed and synthesized, and shown in Fig. 1.

The single-crystal structure of (I) is built up by discrete C19H22N2O4 molecules (Fig. 1), in which all bond lengths are in normal ranges. There is a crystallographic twofold rotation axis passing through the middle point (symmetry code: -x, -y, z) of the C—C—C unit. The molecule adopts a trans conguration in which two phenoldoxime moieties adopts an extended form, where the oxime, methyl groups and phenolic alcohols lie in trans positions relative to the C2 atom in the N—-O—CH2—CH2—CH2—O—N linkage, which is similar to what is observed in our previously reported salen-type bisoxime of 2,2'-[(propane-1,3-diyldioxy)bis(nitrilomethylidyne)]diphenol (Duan et al., 2007). There is an intramolecular O—H···N hydrogen bond between the N1 atom and the hydroxy proton (Table 1) generating a six membered ring, which with weak C—H···O intermolecular hydrogen bonds, stabilizes the three-dimensional structure of (I).

Experimental

2,2'-[(Propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol was synthesized according to an analogous method reported earlier (Dong et al., 2007d). To an ethanol solution (5 ml) of 2'-hydroxyacetophenone (280.9 mg, 2.01 mmol) was added an ethanol (3 ml) solution of 1,3-bis(aminooxy)propane (105.5 mg, 1.00 mmol). The mixture solution was stirred at 328 K for 3 h. After cool to room temperature, the precipitate was formed, which was filtered, and washed successively with ethanol and ethanol/hexane (1:4), respectively. The product was dried under vacuum and to yield 64.90 mg of the title compound. Yield, 19.1%. mp. 363–363.5 K. Anal. Calc. for C19H22N2O4: C, 66.65; H, 6.48; N, 8.18. Found: C, 66.76; H, 6.39; N, 7.97. Colorless needle-shaped single crystals suitable for X-ray diffraction studies were obtained after three months by slow evaporation from an ethanol solution (10 ml) of 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]diphenol.

Refinement

H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), or 0.93 Å (CH),O—H = 0.82 Å, and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O). The hydroxyl protons were located directly from a Fourier map.

Figures

Fig. 1.

Fig. 1.

Molecule structure of (I) possessing a crystallographic twofold rotation axis passing through the middle point of the C—C—C unit (symmetry code: -x+1, -y, z), Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.

Crystal data

C19H22N2O4 F000 = 364
Mr = 342.39 Dx = 1.303 Mg m3
Orthorhombic, Pba2 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2 -2ab Cell parameters from 1047 reflections
a = 7.4595 (15) Å θ = 2.4–22.9º
b = 25.459 (2) Å µ = 0.09 mm1
c = 4.5938 (8) Å T = 298 (2) K
V = 872.4 (2) Å3 Needle-shaped, colorless
Z = 2 0.40 × 0.19 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer 880 independent reflections
Radiation source: fine-focus sealed tube 601 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.080
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 1.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −8→4
Tmin = 0.964, Tmax = 0.985 k = −30→28
3761 measured reflections l = −5→5

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.162   w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
880 reflections Δρmax = 0.18 e Å3
114 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.7665 (5) 0.07883 (13) 0.2794 (9) 0.0424 (10)
O1 0.6235 (4) 0.06405 (11) 0.0997 (8) 0.0497 (10)
O2 1.0675 (4) 0.06514 (11) 0.5410 (10) 0.0613 (12)
H2 0.9857 0.0579 0.4284 0.092*
C1 0.6621 (6) 0.01443 (16) −0.0329 (12) 0.0447 (13)
H1A 0.6845 −0.0120 0.1148 0.054*
H1B 0.7671 0.0171 −0.1564 0.054*
C2 0.5000 0.0000 −0.2107 (16) 0.0479 (18)
H2A 0.5305 −0.0294 −0.3353 0.058* 0.50
H2B 0.4695 0.0294 −0.3353 0.058* 0.50
C3 0.5696 (7) 0.15361 (18) 0.3585 (17) 0.0660 (17)
H3A 0.5088 0.1406 0.1891 0.099*
H3B 0.5989 0.1900 0.3308 0.099*
H3C 0.4931 0.1500 0.5254 0.099*
C4 0.7390 (6) 0.12265 (17) 0.4060 (10) 0.0406 (12)
C5 0.8802 (6) 0.14197 (16) 0.5999 (11) 0.0380 (11)
C6 1.0350 (6) 0.11254 (15) 0.6663 (11) 0.0396 (12)
C7 1.1585 (6) 0.1310 (2) 0.8622 (13) 0.0540 (15)
H7 1.2586 0.1107 0.9065 0.065*
C8 1.1363 (6) 0.1787 (2) 0.9934 (16) 0.0582 (15)
H8 1.2207 0.1908 1.1263 0.070*
C9 0.9884 (8) 0.2086 (2) 0.9277 (16) 0.0649 (18)
H9 0.9733 0.2414 1.0135 0.078*
C10 0.8645 (7) 0.19013 (18) 0.7369 (13) 0.0521 (15)
H10 0.7646 0.2108 0.6966 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.038 (2) 0.047 (2) 0.043 (2) −0.0020 (17) −0.005 (2) 0.002 (2)
O1 0.0458 (18) 0.0516 (19) 0.052 (2) −0.0039 (14) −0.0123 (19) −0.0063 (18)
O2 0.053 (2) 0.054 (2) 0.077 (3) 0.0138 (15) −0.018 (2) −0.0045 (19)
C1 0.048 (3) 0.041 (2) 0.045 (3) −0.004 (2) 0.005 (3) −0.001 (2)
C2 0.068 (5) 0.046 (3) 0.030 (4) −0.007 (3) 0.000 0.000
C3 0.051 (3) 0.060 (3) 0.087 (5) 0.009 (2) −0.021 (4) −0.015 (3)
C4 0.038 (2) 0.042 (2) 0.042 (3) 0.000 (2) −0.005 (2) 0.004 (2)
C5 0.035 (2) 0.045 (2) 0.034 (3) −0.001 (2) −0.001 (2) 0.004 (2)
C6 0.035 (2) 0.042 (2) 0.042 (3) −0.002 (2) −0.002 (2) 0.010 (2)
C7 0.036 (3) 0.066 (3) 0.060 (4) 0.002 (2) −0.015 (3) 0.009 (3)
C8 0.046 (3) 0.072 (3) 0.057 (4) −0.015 (3) −0.011 (3) −0.001 (3)
C9 0.057 (3) 0.056 (3) 0.082 (5) −0.003 (3) −0.017 (4) −0.016 (3)
C10 0.043 (3) 0.056 (3) 0.057 (4) 0.006 (2) −0.004 (3) 0.003 (3)

Geometric parameters (Å, °)

N1—C4 1.275 (5) C3—H3B 0.9600
N1—O1 1.400 (5) C3—H3C 0.9600
O1—C1 1.432 (5) C4—C5 1.464 (6)
O2—C6 1.359 (5) C5—C10 1.383 (6)
O2—H2 0.8200 C5—C6 1.410 (6)
C1—C2 1.505 (6) C6—C7 1.370 (7)
C1—H1A 0.9700 C7—C8 1.366 (7)
C1—H1B 0.9700 C7—H7 0.9300
C2—C1i 1.505 (6) C8—C9 1.374 (7)
C2—H2A 0.9700 C8—H8 0.9300
C2—H2B 0.9700 C9—C10 1.358 (8)
C3—C4 1.505 (6) C9—H9 0.9300
C3—H3A 0.9600 C10—H10 0.9300
C4—N1—O1 112.4 (3) N1—C4—C5 117.1 (4)
N1—O1—C1 109.5 (3) N1—C4—C3 121.8 (4)
C6—O2—H2 109.5 C5—C4—C3 121.1 (4)
O1—C1—C2 106.5 (3) C10—C5—C6 116.2 (4)
O1—C1—H1A 110.4 C10—C5—C4 120.9 (4)
C2—C1—H1A 110.4 C6—C5—C4 122.8 (4)
O1—C1—H1B 110.4 O2—C6—C7 117.6 (4)
C2—C1—H1B 110.4 O2—C6—C5 121.7 (4)
H1A—C1—H1B 108.6 C7—C6—C5 120.7 (4)
C1—C2—C1i 114.3 (6) C8—C7—C6 120.8 (5)
C1—C2—H2A 108.7 C8—C7—H7 119.6
C1i—C2—H2A 108.7 C6—C7—H7 119.6
C1—C2—H2B 108.7 C7—C8—C9 119.6 (5)
C1i—C2—H2B 108.7 C7—C8—H8 120.2
H2A—C2—H2B 107.6 C9—C8—H8 120.2
C4—C3—H3A 109.5 C10—C9—C8 119.7 (5)
C4—C3—H3B 109.5 C10—C9—H9 120.1
H3A—C3—H3B 109.5 C8—C9—H9 120.1
C4—C3—H3C 109.5 C9—C10—C5 122.9 (5)
H3A—C3—H3C 109.5 C9—C10—H10 118.5
H3B—C3—H3C 109.5 C5—C10—H10 118.5
C4—N1—O1—C1 −179.4 (4) C4—C5—C6—O2 3.6 (7)
N1—O1—C1—C2 177.5 (4) C10—C5—C6—C7 1.7 (7)
O1—C1—C2—C1i −70.3 (3) C4—C5—C6—C7 −176.2 (4)
O1—N1—C4—C5 180.0 (3) O2—C6—C7—C8 178.9 (5)
O1—N1—C4—C3 −0.3 (7) C5—C6—C7—C8 −1.3 (8)
N1—C4—C5—C10 177.4 (5) C6—C7—C8—C9 −0.1 (9)
C3—C4—C5—C10 −2.3 (7) C7—C8—C9—C10 1.1 (10)
N1—C4—C5—C6 −4.9 (6) C8—C9—C10—C5 −0.7 (9)
C3—C4—C5—C6 175.4 (5) C6—C5—C10—C9 −0.7 (8)
C10—C5—C6—O2 −178.6 (4) C4—C5—C10—C9 177.2 (5)

Symmetry codes: (i) −x+1, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 0.82 1.85 2.570 (5) 146
C3—H3A···O1 0.96 2.17 2.603 (6) 106

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2386).

References

  1. Atkins, R., Brewer, G., Kokot, E., Mockler, G. M. & Sinn, E. (1985). Inorg. Chem.24, 127–134.
  2. Atwood, D. A. (1997). Coord. Chem. Rev.165, 267–296.
  3. Costes, J.-P., Dahan, F. & Dupuis, A. (2000). Inorg. Chem.39, 165–168. [DOI] [PubMed]
  4. Dong, W. K., Duan, J. G., Dong, C. M., Ren, Z. L. & Shi, J. Y. (2007a). Z. Kristallogr. New Cryst. Struct.222, 327–328.
  5. Dong, W. K., Duan, J. G., Wu, H. L., Shi, J. Y. & Yu, T. Z. (2006a). Z. Kristallogr. New Cryst. Struct.221, 555–556.
  6. Dong, W.-K. & Feng, J.-H. (2006). Acta Cryst. E62, o3577–o3578.
  7. Dong, W. K., Feng, J. H. & Yang, X. Q. (2006b). Z. Kristallogr. New Cryst. Struct.221, 447–448.
  8. Dong, W. K., Feng, J. H. & Yang, X. Q. (2007c). Z. Kristallogr. New Cryst. Struct.222, 50–52.
  9. Dong, W. K., He, X. N., Dong, C. M., Wang, L., Zhong, J. K., Chen, X. & Yu, T. Z. (2007d). Z. Kristallogr. New Cryst. Struct.222, 289–290.
  10. Dong, W. K., Shi, J. Y., Sun, Y. X., Wang, L., Duan, J. G., Zhong, J. K. & Xu, L. (2007b). Anal. Sci.23, x167–x168.
  11. Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.
  12. Katsuki, T. (1995). Coord. Chem. Rev.140, 189–214.
  13. Lacroix, P. G. (2001). Eur. J. Inorg. Chem. pp. 339–348.
  14. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  17. Venkataramanan, N. S., Kuppuraj, G. & Rajagopal, S. (2005). Coord. Chem. Rev.249, 1249–1268.
  18. Yu, T. Z., Zhang, K., Zhao, Y., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong, W. K., Chen, L. L. & Qiu, Y. Q. (2008). Inorg. Chim. Acta, 361, 233–240.
  19. Zhang, Y.-P., Chen, X., Shi, J.-Y., Xu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o3852.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012701/hg2386sup1.cif

e-64-o1098-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012701/hg2386Isup2.hkl

e-64-o1098-Isup2.hkl (43.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES