Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 21;64(Pt 6):o1133–o1134. doi: 10.1107/S1600536808014773

Dimethyl 2-(methyl­amino­methyl­ene)malonate

Martin Gróf a,*, Jozef Kožíšek a, Viktor Milata b, Anton Gatial a
PMCID: PMC2961545  PMID: 21202643

Abstract

In the title compound, C7H11NO4, which is an example of a push–pull alkene, a network of N—H⋯O and C—H⋯O inter­actions helps to establish the crystal structure. The investigated crystal turned out to be a non-merohedral twin with a ratio of twin components of 0.442 (3):0.558 (3). Two pairs of independent mol­ecules (Z′ = 4) are linked by inter­molecular N—H⋯O hydrogen bonds, forming independent chains; the chains are connected via inter­molecular C—H⋯O contacts, building a three-dimensional network.

Related literature

For related literature, see: Bouzard (1990); Cook (1969); Dyke (1973); Freeman (1981); Gróf et al. (2008); Kálmán & Argay (1998); Bolte (2004).graphic file with name e-64-o1133-scheme1.jpg

Experimental

Crystal data

  • C7H11NO4

  • M r = 173.17

  • Triclinic, Inline graphic

  • a = 11.165 (2) Å

  • b = 12.073 (2) Å

  • c = 13.211 (3) Å

  • α = 113.70 (3)°

  • β = 93.71 (3)°

  • γ = 94.02 (3)°

  • V = 1618.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.15 × 0.08 mm

Data collection

  • Oxford Diffraction GEMINI R diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006) T min = 0.968, T max = 0.996

  • 9295 measured reflections

  • 9295 independent reflections

  • 3920 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.091

  • wR(F 2) = 0.257

  • S = 0.90

  • 9295 reflections

  • 446 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014773/si2088sup1.cif

e-64-o1133-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014773/si2088Isup2.hkl

e-64-o1133-Isup2.hkl (454.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.08 2.689 (4) 127
N1—H1⋯O10 0.86 2.42 2.990 (4) 125
N2—H2⋯O5 0.86 2.08 2.687 (4) 127
N2—H2⋯O14i 0.86 2.30 2.893 (5) 127
N3—H3⋯O9 0.86 2.06 2.684 (4) 129
N3—H3⋯O2i 0.86 2.32 2.912 (5) 126
N4—H4⋯O13 0.86 2.08 2.698 (5) 128
N4—H4⋯O6 0.86 2.40 2.957 (5) 123
C4—H4A⋯O2 0.93 2.27 2.683 (7) 106
C6—H6A⋯O14 0.96 2.50 3.449 (7) 169
C11—H11A⋯O6 0.93 2.29 2.706 (6) 107
C11—H11A⋯O13 0.93 2.60 3.487 (6) 159
C14—H14A⋯O13 0.96 2.59 3.507 (6) 161
C18—H18A⋯O1 0.93 2.58 3.470 (6) 160
C18—H18A⋯O10 0.93 2.27 2.679 (6) 106
C25—H25A⋯O14 0.93 2.28 2.691 (6) 106
C27—H27A⋯O2i 0.96 2.59 3.340 (7) 135
C28—H28C⋯O6 0.96 2.60 3.024 (6) 107

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Grant Agency of the Slovak Republic, grant Nos. APVT-20–007304 and VEGA 1/0817/08.

supplementary crystallographic information

Comment

The title compound, C7 H11 N O4, belongs to the so-called push-pull olefins. Push-pull alkenes are substituted ethylenes containing electron-donor groups (D) at one end and electron-acceptor groups (A) at the other end of the general formula D1D2C=CA1A2. These compounds very often contain alkoxy, amino, alkylamino, dialkylamino or (hetero)aryl groups as electron-donor groups and cyano, acetyl, alkylester, methylsulfonyl or NO2 groups as electron-acceptor groups. They are useful as starting reactants or intermediates for a lot of pharmaceutical, polymer and other syntheses (Cook, 1969; Dyke, 1973). Mainly enamines are frequently used as reactants or intermediates in chemical syntheses of drugs, polymers and dyes (Bouzard, 1990). But also alkoxymethylenes are often used in organic synthesis (Freeman, 1981).

Chemical and physical properties of the title related structures were recently discussed (Gróf et al., 2008 and literature cited therein).

The study of a similar compound, dimethyl 2-(aminomethylene)malonate, (Gróf et al., 2008) revealed that this structure exists in the solid phase as EZ conformer (E denotes away from C=C double bond orientation of the carbonyl oxygen in trans position; Z denotes towards to C=C double bond orientation of the carbonyl oxygen in cis position). The title compound exists in the solid phase as ZZa conformer (a denotes anti orientation of the methylamino group, e.g. away from the C=C double bond orientation).

The molecules I and II, and molecules III and IV of the title compound (Fig.1) show pseudo translation (Kálmán & Argay, (1998).

Experimental

To dimethyl 3-methoxymethylenemalonate (1.74 g, 10 mmol) in methanol (10 ml), an aqueous solution of methylamine (12 mmol) was added dropwise (amount according to concentration and density) over a period of 30 min with stirring. The slightly warmed mixture was stirred overnight at room temperature. The reaction mixture was then briefly heated to reflux (ca. 20 min). After ensuring that no starting derivative remained (thin-layer chromatography; Silufol 254, Kavalier Czechoslovakia; eluent chloroform-methanol 10:1 v/v, detection UV light 254 nm), the reaction mixture was evaporated on a vacuum evaporator and chromatographed on silica gel (eluent dichloromethane-methanol 10:1 v/v). Obtained product was recrystallized from minimal amount of chloroform and n-hexane mixture in refrigerator.

The solid phase mid-IR vibrational spectrum was recorded with a Nicolet model NEXUS 470 FTIR spectrometer at room temperature. The measurement was performed after mixing the powdered sample with KBr into a pellet.

The mid-IR vibrational frequencies of dimethyl 2-(methylaminomethylene)malonate are (in cm-1): 3301 m; 3199 w, sh, b; 3092 vw; 3052 vw; 3039 vw; 3013 w; 2999 w; 2951 m; 2924 w, sh; 2905 vw, sh; 1701 vw, sh; 1680 v s; 1651 vw, sh; 1631 v s; 1612 w, sh; 1541 vw; 1478 w; 1450 m; 1430 m; 1405 m; 1360 s; 1330 vw, sh; 1322 m; 1281 s; 1225 s; 1187 m; 1151 s; 1082 m; 1042 w; 1018 m; 998 w; 942 vw; 837 vw, sh; 820 s; 808 s; 768 m; 759 vw, sh; 671 m; 579 w, b; 459 vw; 446 vw; 413 m.

Refinement

Olefinic and amino H atoms were positioned geometrically and allowed to ride on their corresponding parent atoms at distances of 0.93 and 0.86 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). Methyl H atoms were located in a difference Fourier map and included in the model as a rigid rotating group, with C—H distance of 0.96 Å and with Uiso(H) = 1.5Ueq(C).

The investigated crystal was a non-merohedral twin. Two orientation matrices could be determined and the twin law was derived using the program TWINLAW (Bolte, 2004):

h(twin) = (1.00 * h) + (0.00 * k) + (0.00 * l)

k(twin) = (-0.15 * h) + (-1.00 * k) + (0.00 * l)

l(twin) = (-0.16 * h) + (0.00 * k) + (-1.00 *l).

For the refinement the reflection data file was modified using the program HKLF5 (Bolte, 2004). The contribution of the minor twin component refined to 0.442 (3).

Figures

Fig. 1.

Fig. 1.

The atom-numbering scheme of dimethyl 2-(methylaminomethylene)malonate. Displacement ellipsoids are drawn at the 60% probability level.

Fig. 2.

Fig. 2.

Packing diagram of dimethyl 2-(methylaminomethylene)malonate. Hydrogen-bond interactions are indicated by dashed lines.

Crystal data

C7H11NO4 Z = 8
Mr = 173.17 F000 = 736
Triclinic, P1 Dx = 1.422 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 11.165 (2) Å Cell parameters from 2135 reflections
b = 12.073 (2) Å θ = 3.3–29.5º
c = 13.211 (3) Å µ = 0.12 mm1
α = 113.70 (3)º T = 100 K
β = 93.71 (3)º Block, yellow
γ = 94.02 (3)º 0.43 × 0.15 × 0.08 mm
V = 1618.1 (6) Å3

Data collection

Oxford Diffraction GEMINI R diffractometer 9295 independent reflections
Radiation source: fine-focus sealed tube 3920 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.0000
T = 100 K θmax = 25.4º
Rotation method data acquisition using ω and φ scans θmin = 4.1º
Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006) h = −13→13
Tmin = 0.968, Tmax = 0.996 k = −14→14
9295 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.092 H-atom parameters constrained
wR(F2) = 0.257   w = 1/[σ2(Fo2) + (0.1527P)2] where P = (Fo2 + 2Fc2)/3
S = 0.90 (Δ/σ)max = 0.067
9295 reflections Δρmax = 1.13 e Å3
446 parameters Δρmin = −0.54 e Å3
96 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006). 96 rigid bond restaints (DELU) were used in the refinement because the data to parameter ratio is low due to four independent molecules in the twinned structure.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0504 (4) 0.1221 (5) 0.6433 (4) 0.0202 (11)
C2 1.1715 (5) 0.1334 (5) 0.6103 (4) 0.0234 (11)
C3 1.2819 (5) 0.1043 (5) 0.6504 (4) 0.0238 (11)
C4 1.1851 (5) 0.1766 (5) 0.5297 (4) 0.0274 (12)
H4A 1.2634 0.1815 0.5106 0.033*
C5 1.3825 (4) 0.0278 (5) 0.7690 (4) 0.0327 (14)
H5C 1.3656 −0.0079 0.8203 0.039*
H5B 1.4350 0.1019 0.8066 0.039*
H5A 1.4210 −0.0279 0.7090 0.039*
C6 0.9264 (4) 0.0767 (5) 0.7613 (4) 0.0241 (12)
H6C 0.9311 0.0528 0.8224 0.029*
H6B 0.8723 0.0182 0.7012 0.029*
H6A 0.8970 0.1552 0.7848 0.029*
C7 1.1353 (4) 0.2577 (5) 0.3932 (4) 0.0298 (13)
H7C 1.1168 0.3404 0.4176 0.036*
H7B 1.0889 0.2087 0.3236 0.036*
H7A 1.2198 0.2546 0.3840 0.036*
O1 0.9618 (3) 0.1470 (3) 0.6036 (3) 0.0317 (9)
O2 1.3803 (3) 0.1235 (3) 0.6240 (3) 0.0294 (9)
O3 1.0441 (3) 0.0828 (3) 0.7250 (3) 0.0257 (8)
O4 1.2710 (3) 0.0540 (3) 0.7254 (3) 0.0303 (9)
N1 1.1056 (4) 0.2113 (4) 0.4763 (3) 0.0290 (11)
H1 1.0317 0.2069 0.4902 0.035*
C8 0.0163 (4) 0.1936 (5) 1.0767 (4) 0.0227 (11)
C9 0.1389 (4) 0.2097 (5) 1.0475 (4) 0.0198 (10)
C10 0.2442 (4) 0.1583 (5) 1.0733 (4) 0.0234 (11)
C11 0.1614 (4) 0.2782 (5) 0.9871 (4) 0.0224 (11)
H11A 0.2405 0.2835 0.9699 0.027*
C12 0.3325 (4) 0.0431 (6) 1.1587 (4) 0.0374 (14)
H12C 0.3077 −0.0189 1.1835 0.045*
H12B 0.3855 0.1061 1.2165 0.045*
H12A 0.3742 0.0082 1.0936 0.045*
C13 −0.1214 (4) 0.1026 (5) 1.1526 (4) 0.0261 (13)
H13C −0.1269 0.0428 1.1833 0.031*
H13B −0.1767 0.0763 1.0866 0.031*
H13A −0.1415 0.1788 1.2061 0.031*
C14 0.1222 (4) 0.3979 (5) 0.8809 (4) 0.0231 (12)
H14C 0.1054 0.4812 0.9146 0.028*
H14B 0.0770 0.3583 0.8092 0.028*
H14A 0.2068 0.3949 0.8728 0.028*
O5 −0.0631 (3) 0.2510 (3) 1.0591 (3) 0.0302 (9)
O6 0.3444 (3) 0.1722 (3) 1.0442 (3) 0.0350 (10)
O7 −0.0002 (3) 0.1176 (3) 1.1253 (3) 0.0272 (9)
O8 0.2281 (3) 0.0937 (3) 1.1328 (3) 0.0290 (9)
N2 0.0879 (3) 0.3365 (4) 0.9506 (3) 0.0262 (10)
H2 0.0153 0.3386 0.9690 0.031*
C15 0.5457 (4) 0.3104 (5) 0.4300 (4) 0.0228 (11)
C16 0.6700 (4) 0.2928 (5) 0.4565 (4) 0.0211 (11)
C17 0.7792 (4) 0.3434 (5) 0.4301 (4) 0.0233 (11)
C18 0.6930 (4) 0.2229 (5) 0.5142 (4) 0.0205 (11)
H18A 0.7734 0.2125 0.5271 0.025*
C19 0.8722 (4) 0.4640 (5) 0.3477 (4) 0.0289 (13)
H19C 0.8530 0.5219 0.3178 0.035*
H19B 0.9068 0.3981 0.2930 0.035*
H19A 0.9291 0.5030 0.4126 0.035*
C20 0.4082 (4) 0.4033 (5) 0.3540 (4) 0.0277 (13)
H20C 0.4074 0.4651 0.3257 0.033*
H20B 0.3676 0.4278 0.4203 0.033*
H20A 0.3677 0.3284 0.2992 0.033*
C21 0.6479 (4) 0.1022 (5) 0.6200 (4) 0.0203 (11)
H21C 0.6040 0.0227 0.5890 0.024*
H21B 0.6293 0.1455 0.6949 0.024*
H21A 0.7329 0.0947 0.6197 0.024*
O9 0.4592 (3) 0.2600 (3) 0.4495 (3) 0.0293 (9)
O10 0.8808 (3) 0.3234 (3) 0.4529 (3) 0.0315 (9)
O11 0.5322 (3) 0.3861 (3) 0.3795 (3) 0.0255 (8)
O12 0.7640 (3) 0.4176 (3) 0.3774 (3) 0.0276 (9)
N3 0.6133 (3) 0.1691 (4) 0.5531 (3) 0.0231 (10)
H3 0.5379 0.1732 0.5389 0.028*
C22 0.5158 (4) 0.3785 (5) 0.8567 (4) 0.0194 (10)
C23 0.6390 (5) 0.3641 (5) 0.8899 (4) 0.0239 (11)
C24 0.7487 (4) 0.3923 (5) 0.8491 (4) 0.0208 (11)
C25 0.6589 (4) 0.3189 (5) 0.9702 (4) 0.0240 (11)
H25A 0.7389 0.3117 0.9884 0.029*
C26 0.8480 (4) 0.4731 (5) 0.7386 (4) 0.0313 (14)
H26C 0.8301 0.5026 0.6823 0.038*
H26B 0.8883 0.4010 0.7078 0.038*
H26A 0.8992 0.5344 0.7993 0.038*
C27 0.3829 (4) 0.4259 (5) 0.7369 (4) 0.0283 (13)
H27C 0.3840 0.4511 0.6767 0.034*
H27B 0.3486 0.4854 0.7977 0.034*
H27A 0.3352 0.3488 0.7126 0.034*
C28 0.6131 (4) 0.2394 (5) 1.1070 (4) 0.0288 (13)
H28C 0.5723 0.1594 1.0857 0.035*
H28B 0.5901 0.2928 1.1776 0.035*
H28A 0.6988 0.2357 1.1127 0.035*
O13 0.4292 (3) 0.3554 (3) 0.8977 (3) 0.0285 (9)
O14 0.8494 (3) 0.3706 (3) 0.8760 (3) 0.0303 (9)
O15 0.5064 (3) 0.4145 (3) 0.7733 (3) 0.0274 (9)
O16 0.7371 (3) 0.4453 (3) 0.7781 (3) 0.0281 (9)
N4 0.5799 (3) 0.2852 (4) 1.0234 (3) 0.0279 (11)
H4 0.5048 0.2902 1.0087 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0197 (14) 0.022 (3) 0.023 (3) −0.001 (2) 0.0012 (18) 0.015 (2)
C2 0.0238 (14) 0.027 (3) 0.028 (3) 0.004 (2) 0.010 (2) 0.018 (2)
C3 0.0194 (13) 0.024 (3) 0.032 (3) −0.005 (2) 0.0010 (19) 0.016 (2)
C4 0.025 (2) 0.038 (4) 0.028 (3) 0.001 (2) 0.0052 (19) 0.021 (2)
C5 0.017 (2) 0.051 (4) 0.037 (3) 0.010 (3) 0.002 (2) 0.024 (3)
C6 0.016 (2) 0.029 (3) 0.033 (3) 0.003 (2) 0.010 (2) 0.017 (3)
C7 0.019 (3) 0.047 (4) 0.039 (3) 0.007 (3) 0.008 (2) 0.032 (3)
O1 0.0238 (14) 0.045 (3) 0.039 (2) 0.0054 (18) 0.0020 (16) 0.0304 (19)
O2 0.0227 (13) 0.035 (2) 0.037 (2) 0.0020 (17) 0.0098 (15) 0.0208 (19)
O3 0.0162 (16) 0.041 (2) 0.033 (2) 0.0036 (16) 0.0077 (14) 0.0271 (17)
O4 0.0117 (16) 0.050 (3) 0.043 (2) 0.0040 (16) 0.0044 (14) 0.0333 (18)
N1 0.022 (2) 0.040 (3) 0.037 (3) 0.000 (2) 0.0054 (17) 0.028 (2)
C8 0.0168 (15) 0.033 (3) 0.030 (3) 0.004 (2) 0.009 (2) 0.023 (2)
C9 0.0169 (15) 0.028 (3) 0.021 (3) 0.0014 (19) 0.009 (2) 0.015 (2)
C10 0.0171 (15) 0.039 (3) 0.024 (3) 0.004 (2) 0.009 (2) 0.022 (2)
C11 0.012 (2) 0.032 (3) 0.032 (3) −0.0026 (19) 0.0027 (19) 0.022 (2)
C12 0.023 (3) 0.056 (4) 0.048 (4) 0.015 (3) 0.005 (3) 0.034 (3)
C13 0.014 (2) 0.037 (4) 0.038 (3) 0.002 (2) 0.010 (2) 0.026 (3)
C14 0.023 (3) 0.028 (3) 0.023 (3) 0.002 (2) 0.005 (2) 0.015 (2)
O5 0.0174 (15) 0.045 (3) 0.042 (2) 0.0075 (16) 0.0068 (16) 0.0311 (19)
O6 0.0161 (14) 0.058 (3) 0.050 (2) 0.0019 (18) 0.0111 (17) 0.041 (2)
O7 0.0144 (16) 0.043 (2) 0.040 (2) 0.0013 (15) 0.0094 (15) 0.0329 (18)
O8 0.0155 (17) 0.049 (3) 0.042 (2) 0.0103 (16) 0.0146 (15) 0.0355 (18)
N2 0.013 (2) 0.039 (3) 0.039 (3) 0.0046 (18) 0.0077 (18) 0.028 (2)
C15 0.0119 (11) 0.033 (3) 0.030 (3) −0.0031 (19) −0.005 (2) 0.022 (2)
C16 0.0128 (11) 0.032 (3) 0.027 (3) 0.0031 (19) 0.001 (2) 0.021 (2)
C17 0.0135 (12) 0.040 (3) 0.026 (3) 0.003 (2) 0.003 (2) 0.023 (2)
C18 0.012 (2) 0.031 (3) 0.025 (3) 0.0008 (19) 0.0000 (19) 0.019 (2)
C19 0.012 (2) 0.040 (4) 0.043 (3) −0.004 (2) 0.005 (2) 0.026 (3)
C20 0.0096 (19) 0.041 (4) 0.042 (3) 0.003 (2) −0.003 (2) 0.026 (3)
C21 0.013 (3) 0.029 (3) 0.025 (3) −0.001 (2) 0.002 (2) 0.017 (2)
O9 0.0130 (12) 0.044 (2) 0.042 (2) −0.0022 (16) −0.0003 (16) 0.0305 (19)
O10 0.0138 (11) 0.051 (3) 0.044 (2) 0.0069 (16) 0.0047 (16) 0.033 (2)
O11 0.0089 (15) 0.041 (2) 0.040 (2) 0.0046 (14) 0.0015 (14) 0.0301 (18)
O12 0.0089 (16) 0.039 (2) 0.047 (2) −0.0023 (14) 0.0013 (15) 0.0319 (18)
N3 0.013 (2) 0.030 (3) 0.036 (3) 0.0008 (17) 0.0019 (17) 0.022 (2)
C22 0.0149 (12) 0.021 (3) 0.028 (3) −0.005 (2) 0.0005 (17) 0.017 (2)
C23 0.0187 (12) 0.033 (4) 0.026 (3) 0.002 (2) 0.0005 (19) 0.018 (2)
C24 0.0151 (13) 0.023 (3) 0.031 (3) 0.002 (2) −0.0005 (19) 0.018 (2)
C25 0.017 (2) 0.032 (3) 0.030 (3) 0.002 (2) 0.0029 (18) 0.019 (2)
C26 0.020 (2) 0.042 (4) 0.033 (3) −0.007 (3) 0.006 (2) 0.019 (3)
C27 0.0096 (19) 0.045 (4) 0.040 (3) 0.000 (2) −0.001 (2) 0.028 (3)
C28 0.016 (3) 0.044 (4) 0.040 (3) 0.004 (2) 0.009 (2) 0.029 (3)
O13 0.0200 (13) 0.040 (2) 0.035 (2) −0.0019 (17) 0.0086 (15) 0.0246 (18)
O14 0.0181 (12) 0.040 (3) 0.040 (2) 0.0072 (17) −0.0039 (15) 0.0246 (19)
O15 0.0099 (15) 0.048 (3) 0.039 (2) −0.0001 (16) 0.0013 (14) 0.0338 (19)
O16 0.0100 (16) 0.047 (3) 0.043 (2) 0.0014 (16) 0.0000 (14) 0.0347 (18)
N4 0.018 (2) 0.035 (3) 0.041 (3) −0.0015 (19) 0.0029 (17) 0.026 (2)

Geometric parameters (Å, °)

C1—O1 1.202 (5) C15—O9 1.204 (5)
C1—O3 1.346 (5) C15—O11 1.341 (6)
C1—C2 1.461 (6) C15—C16 1.460 (6)
C2—C4 1.373 (6) C16—C18 1.372 (6)
C2—C3 1.432 (7) C16—C17 1.450 (7)
C3—O2 1.208 (5) C17—O10 1.220 (5)
C3—O4 1.362 (6) C17—O12 1.350 (6)
C4—N1 1.292 (6) C18—N3 1.313 (6)
C4—H4A 0.9300 C18—H18A 0.9300
C5—O4 1.447 (5) C19—O12 1.439 (5)
C5—H5C 0.9600 C19—H19C 0.9600
C5—H5B 0.9600 C19—H19B 0.9600
C5—H5A 0.9600 C19—H19A 0.9600
C6—O3 1.435 (5) C20—O11 1.452 (5)
C6—H6C 0.9600 C20—H20C 0.9600
C6—H6B 0.9600 C20—H20B 0.9600
C6—H6A 0.9600 C20—H20A 0.9600
C7—N1 1.465 (6) C21—N3 1.467 (6)
C7—H7C 0.9600 C21—H21C 0.9600
C7—H7B 0.9600 C21—H21B 0.9600
C7—H7A 0.9600 C21—H21A 0.9600
N1—H1 0.8600 N3—H3 0.8600
C8—O5 1.228 (5) C22—O13 1.207 (5)
C8—O7 1.326 (6) C22—O15 1.338 (5)
C8—C9 1.466 (6) C22—C23 1.459 (6)
C9—C11 1.383 (6) C23—C25 1.388 (7)
C9—C10 1.450 (6) C23—C24 1.443 (7)
C10—O6 1.228 (5) C24—O14 1.235 (5)
C10—O8 1.324 (5) C24—O16 1.335 (6)
C11—N2 1.305 (6) C25—N4 1.302 (6)
C11—H11A 0.9300 C25—H25A 0.9300
C12—O8 1.438 (5) C26—O16 1.444 (5)
C12—H12C 0.9600 C26—H26C 0.9600
C12—H12B 0.9600 C26—H26B 0.9600
C12—H12A 0.9600 C26—H26A 0.9600
C13—O7 1.440 (5) C27—O15 1.465 (5)
C13—H13C 0.9600 C27—H27C 0.9600
C13—H13B 0.9600 C27—H27B 0.9600
C13—H13A 0.9600 C27—H27A 0.9600
C14—N2 1.449 (6) C28—N4 1.460 (6)
C14—H14C 0.9600 C28—H28C 0.9600
C14—H14B 0.9600 C28—H28B 0.9600
C14—H14A 0.9600 C28—H28A 0.9600
N2—H2 0.8600 N4—H4 0.8600
O1—C1—O3 121.1 (4) O9—C15—O11 120.7 (4)
O1—C1—C2 124.2 (5) O9—C15—C16 123.5 (5)
O3—C1—C2 114.7 (4) O11—C15—C16 115.8 (4)
C4—C2—C3 113.4 (5) C18—C16—C17 112.7 (4)
C4—C2—C1 117.9 (5) C18—C16—C15 119.9 (4)
C3—C2—C1 128.7 (5) C17—C16—C15 127.4 (5)
O2—C3—O4 120.0 (5) O10—C17—O12 119.6 (4)
O2—C3—C2 124.8 (5) O10—C17—C16 124.3 (5)
O4—C3—C2 115.2 (4) O12—C17—C16 116.1 (4)
N1—C4—C2 129.8 (5) N3—C18—C16 126.8 (4)
N1—C4—H4A 115.1 N3—C18—H18A 116.6
C2—C4—H4A 115.1 C16—C18—H18A 116.6
O4—C5—H5C 109.5 O12—C19—H19C 109.5
O4—C5—H5B 109.5 O12—C19—H19B 109.5
H5C—C5—H5B 109.5 H19C—C19—H19B 109.5
O4—C5—H5A 109.5 O12—C19—H19A 109.5
H5C—C5—H5A 109.5 H19C—C19—H19A 109.5
H5B—C5—H5A 109.5 H19B—C19—H19A 109.5
O3—C6—H6C 109.5 O11—C20—H20C 109.5
O3—C6—H6B 109.5 O11—C20—H20B 109.5
H6C—C6—H6B 109.5 H20C—C20—H20B 109.5
O3—C6—H6A 109.5 O11—C20—H20A 109.5
H6C—C6—H6A 109.5 H20C—C20—H20A 109.5
H6B—C6—H6A 109.5 H20B—C20—H20A 109.5
N1—C7—H7C 109.5 N3—C21—H21C 109.5
N1—C7—H7B 109.5 N3—C21—H21B 109.5
H7C—C7—H7B 109.5 H21C—C21—H21B 109.5
N1—C7—H7A 109.5 N3—C21—H21A 109.5
H7C—C7—H7A 109.5 H21C—C21—H21A 109.5
H7B—C7—H7A 109.5 H21B—C21—H21A 109.5
C1—O3—C6 115.1 (4) C15—O11—C20 115.3 (4)
C3—O4—C5 115.6 (4) C17—O12—C19 115.9 (4)
C4—N1—C7 123.2 (4) C18—N3—C21 122.5 (4)
C4—N1—H1 118.4 C18—N3—H3 118.7
C7—N1—H1 118.4 C21—N3—H3 118.7
O5—C8—O7 123.5 (4) O13—C22—O15 122.7 (4)
O5—C8—C9 120.8 (5) O13—C22—C23 123.1 (5)
O7—C8—C9 115.7 (4) O15—C22—C23 114.2 (4)
C11—C9—C10 113.6 (4) C25—C23—C24 113.1 (5)
C11—C9—C8 119.4 (5) C25—C23—C22 119.3 (5)
C10—C9—C8 127.0 (4) C24—C23—C22 127.6 (5)
O6—C10—O8 119.7 (5) O14—C24—O16 119.8 (4)
O6—C10—C9 124.2 (5) O14—C24—C23 124.0 (5)
O8—C10—C9 116.1 (4) O16—C24—C23 116.2 (4)
N2—C11—C9 129.5 (4) N4—C25—C23 128.4 (5)
N2—C11—H11A 115.3 N4—C25—H25A 115.8
C9—C11—H11A 115.3 C23—C25—H25A 115.8
O8—C12—H12C 109.5 O16—C26—H26C 109.5
O8—C12—H12B 109.5 O16—C26—H26B 109.5
H12C—C12—H12B 109.5 H26C—C26—H26B 109.5
O8—C12—H12A 109.5 O16—C26—H26A 109.5
H12C—C12—H12A 109.5 H26C—C26—H26A 109.5
H12B—C12—H12A 109.5 H26B—C26—H26A 109.5
O7—C13—H13C 109.5 O15—C27—H27C 109.5
O7—C13—H13B 109.5 O15—C27—H27B 109.5
H13C—C13—H13B 109.5 H27C—C27—H27B 109.5
O7—C13—H13A 109.5 O15—C27—H27A 109.5
H13C—C13—H13A 109.5 H27C—C27—H27A 109.5
H13B—C13—H13A 109.5 H27B—C27—H27A 109.5
N2—C14—H14C 109.5 N4—C28—H28C 109.5
N2—C14—H14B 109.5 N4—C28—H28B 109.5
H14C—C14—H14B 109.5 H28C—C28—H28B 109.5
N2—C14—H14A 109.5 N4—C28—H28A 109.5
H14C—C14—H14A 109.5 H28C—C28—H28A 109.5
H14B—C14—H14A 109.5 H28B—C28—H28A 109.5
C8—O7—C13 114.7 (4) C22—O15—C27 114.7 (4)
C10—O8—C12 116.1 (4) C24—O16—C26 115.3 (4)
C11—N2—C14 123.4 (4) C25—N4—C28 122.9 (4)
C11—N2—H2 118.3 C25—N4—H4 118.6
C14—N2—H2 118.3 C28—N4—H4 118.6
O1—C1—C2—C4 0.8 (8) O9—C15—C16—C18 −5.1 (8)
O3—C1—C2—C4 −178.1 (5) O11—C15—C16—C18 176.0 (5)
O1—C1—C2—C3 −178.7 (5) O9—C15—C16—C17 175.9 (6)
O3—C1—C2—C3 2.4 (8) O11—C15—C16—C17 −3.0 (7)
C4—C2—C3—O2 5.5 (8) C18—C16—C17—O10 2.3 (8)
C1—C2—C3—O2 −175.0 (5) C15—C16—C17—O10 −178.6 (5)
C4—C2—C3—O4 −176.0 (5) C18—C16—C17—O12 −177.3 (4)
C1—C2—C3—O4 3.5 (8) C15—C16—C17—O12 1.8 (8)
C3—C2—C4—N1 −179.8 (5) C17—C16—C18—N3 177.3 (5)
C1—C2—C4—N1 0.6 (9) C15—C16—C18—N3 −1.9 (8)
O1—C1—O3—C6 −1.6 (7) O9—C15—O11—C20 1.4 (7)
C2—C1—O3—C6 177.3 (4) C16—C15—O11—C20 −179.7 (4)
O2—C3—O4—C5 0.4 (7) O10—C17—O12—C19 2.6 (7)
C2—C3—O4—C5 −178.1 (4) C16—C17—O12—C19 −177.8 (4)
C2—C4—N1—C7 178.8 (5) C16—C18—N3—C21 −176.1 (5)
O5—C8—C9—C11 −8.2 (7) O13—C22—C23—C25 1.8 (8)
O7—C8—C9—C11 173.8 (5) O15—C22—C23—C25 −175.5 (5)
O5—C8—C9—C10 173.2 (5) O13—C22—C23—C24 −178.0 (5)
O7—C8—C9—C10 −4.7 (7) O15—C22—C23—C24 4.8 (8)
C11—C9—C10—O6 −0.6 (8) C25—C23—C24—O14 5.0 (8)
C8—C9—C10—O6 178.0 (5) C22—C23—C24—O14 −175.2 (5)
C11—C9—C10—O8 178.8 (4) C25—C23—C24—O16 −174.8 (4)
C8—C9—C10—O8 −2.6 (8) C22—C23—C24—O16 4.9 (8)
C10—C9—C11—N2 −179.9 (5) C24—C23—C25—N4 179.9 (5)
C8—C9—C11—N2 1.3 (8) C22—C23—C25—N4 0.1 (9)
O5—C8—O7—C13 2.5 (7) O13—C22—O15—C27 1.1 (7)
C9—C8—O7—C13 −179.6 (4) C23—C22—O15—C27 178.3 (4)
O6—C10—O8—C12 −0.3 (7) O14—C24—O16—C26 −0.1 (7)
C9—C10—O8—C12 −179.8 (4) C23—C24—O16—C26 179.8 (4)
C9—C11—N2—C14 −175.4 (5) C23—C25—N4—C28 −179.7 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 2.08 2.689 (4) 127
N1—H1···O10 0.86 2.42 2.990 (4) 125
N2—H2···O5 0.86 2.08 2.687 (4) 127
N2—H2···O14i 0.86 2.30 2.893 (5) 127
N3—H3···O9 0.86 2.06 2.684 (4) 129
N3—H3···O2i 0.86 2.32 2.912 (5) 126
N4—H4···O13 0.86 2.08 2.698 (5) 128
N4—H4···O6 0.86 2.40 2.957 (5) 123
C4—H4A···O2 0.93 2.27 2.683 (7) 106
C6—H6A···O14 0.96 2.50 3.449 (7) 169
C11—H11A···O6 0.93 2.29 2.706 (6) 107
C11—H11A···O13 0.93 2.60 3.487 (6) 159
C14—H14A···O13 0.96 2.59 3.507 (6) 161
C18—H18A···O1 0.93 2.58 3.470 (6) 160
C18—H18A···O10 0.93 2.27 2.679 (6) 106
C25—H25A···O14 0.93 2.28 2.691 (6) 106
C27—H27A···O2i 0.96 2.59 3.340 (7) 135
C28—H28C···O6 0.96 2.60 3.024 (6) 107

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2088).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Bolte, M. (2004). J. Appl. Cryst.37, 162–165.
  3. Bouzard, D. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, p. 249. München: Springer-Verlag.
  4. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Cook, A. G. (1969). Enamines: Syntheses, Structure and Reactions New York: Marcel Dekker.
  6. Dyke, S. F. (1973). The Chemistry of Enamines London: Cambridge University Press.
  7. Freeman, F. (1981). LONZA Reaction of Malononitrile Derivatives, p. 925. Stuttgart: Georg Thieme Verlag.
  8. Gróf, M., Kožíšek, J., Milata, V. & Gatial, A. (2008). Acta Cryst. E64, o998. [DOI] [PMC free article] [PubMed]
  9. Kálmán, A. & Argay, Gy. (1998). Acta Cryst. B54, 877–888.
  10. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808014773/si2088sup1.cif

e-64-o1133-sup1.cif (28.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014773/si2088Isup2.hkl

e-64-o1133-Isup2.hkl (454.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES