Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1035. doi: 10.1107/S1600536808013287

3,4-Dihydroxy­benzaldehyde 4-phenyl­thio­semicarbazone

Kong Wai Tan a, Yang Farina b, Chew Hee Ng c,*, Mohd Jamil Maah d, Seik Weng Ng d
PMCID: PMC2961546  PMID: 21202558

Abstract

Mol­ecules of the title compound, C14H13N3O2S, are linked by inter­molecular O—H⋯O hydrogen bonds into centrosymmetric dimers forming R 2 2(4) rings which are further linked by O—H⋯S hydrogen bonds and weaker N—H⋯S and N—H⋯O hydrogen bonds to form a three-dimensional network.

Related literature

For the structure of 2,3-dihydroxy­benzaldehyde thio­semi­carbazone hemihydrate, see: Swesi et al. (2006). For metal derivatives of the title compound, see: Zhu et al. (1997). The graph-set notation is given by Bernstein et al. (1995).graphic file with name e-64-o1035-scheme1.jpg

Experimental

Crystal data

  • C14H13N3O2S

  • M r = 287.33

  • Monoclinic, Inline graphic

  • a = 9.7261 (2) Å

  • b = 13.1863 (3) Å

  • c = 10.7732 (3) Å

  • β = 99.055 (2)°

  • V = 1364.46 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.909, T max = 0.953

  • 16724 measured reflections

  • 3132 independent reflections

  • 2358 reflections with I > 2σ(I)

  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.115

  • S = 1.04

  • 3132 reflections

  • 197 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013287/lh2625sup1.cif

e-64-o1035-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013287/lh2625Isup2.hkl

e-64-o1035-Isup2.hkl (153.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (1) 2.03 (2) 2.737 (2) 141 (2)
O2—H2o⋯S1ii 0.85 (1) 2.34 (1) 3.134 (1) 156 (2)
N2—H2n⋯S1iii 0.85 (1) 2.73 (1) 3.487 (2) 150 (2)
N2—H2n⋯O1iv 0.85 (1) 2.56 (2) 3.022 (2) 115 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the University of Malaya (P0265/2007 A) for supporting this study; KWT thanks the Ministry of Higher Education for an SLAI scholarship in this research.

supplementary crystallographic information

Comment

A previous study of the Schiff bases derived by condensing substituted benzaldehydes with 4-phenylthiosemicarbazides reported the 2,3-dihydroxy compound, which crystallizes as a hemihydrate. The compound features extensive hydrogen bond (Swesi et al., 2006). In the title 3,4-dihydroxy isomer the 4-hydroxy group functions as hydrogen-bond donor to the 3-hydroxy group of a symmetry-related molecule forming R22(4) rings (Bernstein et al., 1995). In addition, the 3-hydroxy group is a donor to the sulfur atom of another molecule; the hydrogen bonding arrangement furnishes a three-dimensional network motif. The amino groups are involved in weaker hydrogen bond interactions.

Further work will investigate the formation of metal deratives of the ligand; some metal complexes have been reported by others but these have not characterized by crystallography yet (Zhu et al., 1997).

Experimental

4-Phenylthiosemicarbazide (0.17 g, 1 mmol) and 3,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (20 ml) for 3 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with a distance retraint of O–H = N–H = 0.85±0.01 Å; their temperature factors were similarly tied.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid (Barbour, 2001) plot of C14H13N3O2S at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Crystal data

C14H13N3O2S F000 = 600
Mr = 287.33 Dx = 1.399 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2291 reflections
a = 9.7261 (2) Å θ = 2.5–23.4º
b = 13.1863 (3) Å µ = 0.24 mm1
c = 10.7732 (3) Å T = 100 (2) K
β = 99.055 (2)º Block, yellow
V = 1364.46 (6) Å3 0.40 × 0.30 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 3132 independent reflections
Radiation source: fine-focus sealed tube 2358 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.078
T = 100(2) K θmax = 27.5º
ω scans θmin = 2.1º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996) h = −12→12
Tmin = 0.910, Tmax = 0.953 k = −17→16
16724 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115   w = 1/[σ2(Fo2) + (0.0502P)2 + 0.2883P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3132 reflections Δρmax = 0.40 e Å3
197 parameters Δρmin = −0.32 e Å3
4 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.08441 (5) 0.12769 (4) 0.40212 (5) 0.02006 (15)
O1 0.65919 (15) 0.45705 (10) 0.89678 (14) 0.0221 (3)
O2 0.40955 (14) 0.39195 (11) 0.94986 (14) 0.0231 (3)
N1 0.83208 (16) 0.18905 (12) 0.63925 (15) 0.0187 (4)
N2 0.90695 (16) 0.13520 (12) 0.56294 (16) 0.0185 (4)
N3 1.03542 (19) 0.27810 (13) 0.55853 (18) 0.0258 (4)
C1 0.64419 (19) 0.20682 (14) 0.75172 (18) 0.0172 (4)
C2 0.6914 (2) 0.30261 (14) 0.79586 (18) 0.0177 (4)
H2 0.7798 0.3262 0.7814 0.021*
C3 0.61093 (19) 0.36257 (14) 0.85974 (18) 0.0168 (4)
C4 0.48283 (19) 0.32692 (15) 0.88517 (18) 0.0175 (4)
C5 0.4360 (2) 0.23207 (15) 0.84415 (19) 0.0207 (4)
H5 0.3492 0.2077 0.8620 0.025*
C6 0.5160 (2) 0.17194 (15) 0.77643 (19) 0.0204 (4)
H6 0.4831 0.1071 0.7471 0.024*
C7 0.72652 (19) 0.14733 (15) 0.67561 (19) 0.0190 (4)
H7 0.7022 0.0792 0.6536 0.023*
C8 1.00702 (19) 0.18502 (14) 0.51400 (19) 0.0177 (4)
C9 1.1227 (2) 0.35150 (15) 0.5122 (2) 0.0212 (4)
C10 1.2393 (2) 0.38550 (18) 0.5909 (2) 0.0304 (5)
H10 1.2651 0.3565 0.6719 0.037*
C11 1.3183 (3) 0.4624 (2) 0.5504 (2) 0.0386 (6)
H11 1.3986 0.4863 0.6042 0.046*
C12 1.2821 (2) 0.50451 (18) 0.4336 (2) 0.0339 (6)
H12 1.3366 0.5576 0.4070 0.041*
C13 1.1657 (2) 0.46947 (18) 0.3545 (2) 0.0348 (6)
H13 1.1410 0.4977 0.2729 0.042*
C14 1.0858 (2) 0.39327 (17) 0.3946 (2) 0.0287 (5)
H14 1.0053 0.3696 0.3410 0.034*
H1O 0.602 (2) 0.4875 (17) 0.935 (2) 0.035 (7)*
H2O 0.3276 (14) 0.3698 (18) 0.950 (3) 0.043 (8)*
H2N 0.890 (2) 0.0737 (9) 0.542 (2) 0.036 (7)*
H3N 0.995 (2) 0.2960 (17) 0.6187 (16) 0.027 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0175 (2) 0.0195 (3) 0.0249 (3) 0.00003 (19) 0.00859 (19) −0.0035 (2)
O1 0.0209 (7) 0.0162 (7) 0.0316 (9) −0.0015 (6) 0.0116 (6) −0.0063 (6)
O2 0.0158 (7) 0.0226 (8) 0.0328 (9) −0.0011 (6) 0.0093 (6) −0.0075 (6)
N1 0.0181 (8) 0.0188 (9) 0.0207 (9) 0.0021 (7) 0.0081 (7) −0.0017 (7)
N2 0.0173 (8) 0.0148 (9) 0.0250 (9) −0.0013 (7) 0.0086 (7) −0.0043 (7)
N3 0.0313 (10) 0.0202 (9) 0.0310 (11) −0.0081 (8) 0.0202 (8) −0.0076 (8)
C1 0.0159 (9) 0.0187 (10) 0.0178 (10) −0.0003 (7) 0.0048 (8) −0.0011 (8)
C2 0.0146 (9) 0.0178 (10) 0.0216 (10) −0.0011 (7) 0.0056 (8) −0.0001 (8)
C3 0.0169 (9) 0.0148 (10) 0.0184 (10) −0.0004 (7) 0.0016 (7) 0.0000 (7)
C4 0.0148 (9) 0.0204 (10) 0.0183 (10) 0.0026 (7) 0.0052 (7) −0.0008 (8)
C5 0.0141 (9) 0.0206 (10) 0.0285 (12) −0.0020 (8) 0.0064 (8) −0.0007 (8)
C6 0.0199 (10) 0.0175 (10) 0.0246 (11) −0.0030 (8) 0.0061 (8) −0.0026 (8)
C7 0.0185 (10) 0.0168 (10) 0.0223 (11) −0.0018 (8) 0.0054 (8) −0.0027 (8)
C8 0.0145 (9) 0.0167 (10) 0.0224 (10) 0.0011 (7) 0.0046 (8) −0.0002 (8)
C9 0.0204 (10) 0.0170 (10) 0.0287 (12) −0.0037 (8) 0.0114 (8) −0.0041 (8)
C10 0.0317 (12) 0.0345 (13) 0.0248 (12) −0.0058 (10) 0.0034 (9) 0.0012 (10)
C11 0.0328 (13) 0.0442 (15) 0.0381 (15) −0.0193 (11) 0.0032 (11) −0.0047 (11)
C12 0.0323 (13) 0.0250 (12) 0.0474 (16) −0.0093 (10) 0.0155 (11) 0.0037 (11)
C13 0.0336 (13) 0.0312 (13) 0.0396 (15) 0.0016 (10) 0.0059 (11) 0.0148 (11)
C14 0.0211 (10) 0.0310 (12) 0.0328 (13) −0.0033 (9) 0.0011 (9) 0.0030 (10)

Geometric parameters (Å, °)

S1—C8 1.696 (2) C3—C4 1.398 (3)
O1—C3 1.368 (2) C4—C5 1.380 (3)
O1—H1O 0.85 (1) C5—C6 1.395 (3)
O2—C4 1.373 (2) C5—H5 0.9500
O2—H2O 0.85 (1) C6—H6 0.9500
N1—C7 1.279 (2) C7—H7 0.9500
N1—N2 1.378 (2) C9—C14 1.376 (3)
N2—C8 1.348 (2) C9—C10 1.380 (3)
N2—H2N 0.85 (1) C10—C11 1.383 (3)
N3—C8 1.331 (3) C10—H10 0.9500
N3—C9 1.428 (3) C11—C12 1.370 (3)
N3—H3N 0.84 (1) C11—H11 0.9500
C1—C6 1.393 (3) C12—C13 1.385 (3)
C1—C2 1.401 (3) C12—H12 0.9500
C1—C7 1.461 (3) C13—C14 1.381 (3)
C2—C3 1.372 (3) C13—H13 0.9500
C2—H2 0.9500 C14—H14 0.9500
C3—O1—H1O 110.7 (17) C5—C6—H6 119.9
C4—O2—H2O 110.6 (18) N1—C7—C1 118.55 (17)
C7—N1—N2 119.07 (16) N1—C7—H7 120.7
C8—N2—N1 117.64 (16) C1—C7—H7 120.7
C8—N2—H2N 119.3 (17) N3—C8—N2 115.47 (17)
N1—N2—H2N 123.0 (17) N3—C8—S1 125.24 (15)
C8—N3—C9 126.89 (17) N2—C8—S1 119.28 (15)
C8—N3—H3N 116.2 (16) C14—C9—C10 120.35 (19)
C9—N3—H3N 116.9 (16) C14—C9—N3 120.67 (19)
C6—C1—C2 119.21 (17) C10—C9—N3 118.8 (2)
C6—C1—C7 121.05 (18) C9—C10—C11 119.2 (2)
C2—C1—C7 119.68 (17) C9—C10—H10 120.4
C3—C2—C1 120.50 (17) C11—C10—H10 120.4
C3—C2—H2 119.7 C12—C11—C10 120.8 (2)
C1—C2—H2 119.7 C12—C11—H11 119.6
O1—C3—C2 118.33 (17) C10—C11—H11 119.6
O1—C3—C4 121.62 (17) C11—C12—C13 119.8 (2)
C2—C3—C4 120.06 (17) C11—C12—H12 120.1
O2—C4—C5 123.84 (17) C13—C12—H12 120.1
O2—C4—C3 116.05 (17) C14—C13—C12 119.7 (2)
C5—C4—C3 120.10 (18) C14—C13—H13 120.1
C4—C5—C6 119.95 (18) C12—C13—H13 120.1
C4—C5—H5 120.0 C9—C14—C13 120.1 (2)
C6—C5—H5 120.0 C9—C14—H14 119.9
C1—C6—C5 120.14 (18) C13—C14—H14 119.9
C1—C6—H6 119.9
C7—N1—N2—C8 172.24 (18) C2—C1—C7—N1 −7.8 (3)
C6—C1—C2—C3 −1.7 (3) C9—N3—C8—N2 −171.35 (19)
C7—C1—C2—C3 175.33 (18) C9—N3—C8—S1 7.8 (3)
C1—C2—C3—O1 −177.55 (17) N1—N2—C8—N3 8.7 (3)
C1—C2—C3—C4 2.2 (3) N1—N2—C8—S1 −170.51 (13)
O1—C3—C4—O2 −0.4 (3) C8—N3—C9—C14 66.2 (3)
C2—C3—C4—O2 179.82 (17) C8—N3—C9—C10 −118.6 (2)
O1—C3—C4—C5 178.64 (18) C14—C9—C10—C11 0.3 (3)
C2—C3—C4—C5 −1.1 (3) N3—C9—C10—C11 −174.9 (2)
O2—C4—C5—C6 178.51 (18) C9—C10—C11—C12 −0.2 (4)
C3—C4—C5—C6 −0.5 (3) C10—C11—C12—C13 −0.5 (4)
C2—C1—C6—C5 0.1 (3) C11—C12—C13—C14 1.0 (4)
C7—C1—C6—C5 −176.89 (18) C10—C9—C14—C13 0.1 (3)
C4—C5—C6—C1 1.0 (3) N3—C9—C14—C13 175.3 (2)
N2—N1—C7—C1 −177.22 (16) C12—C13—C14—C9 −0.8 (4)
C6—C1—C7—N1 169.23 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O2i 0.85 (1) 2.03 (2) 2.737 (2) 141 (2)
O2—H2O···S1ii 0.85 (1) 2.34 (1) 3.134 (1) 156 (2)
N2—H2N···S1iii 0.85 (1) 2.73 (1) 3.487 (2) 150 (2)
N2—H2N···O1iv 0.85 (1) 2.56 (2) 3.022 (2) 115 (2)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) x−1, −y+1/2, z+1/2; (iii) −x+2, −y, −z+1; (iv) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2625).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Swesi, A. T., Farina, Y., Kassim, M. & Ng, S. W. (2006). Acta Cryst. E62, o5457–o5458.
  7. Westrip, S. P. (2008). publCIF In preparation.
  8. Zhu, X. D., Wang, G. C., Lu, Z. P. & Li, Y. L. (1997). Transition Met. Chem.22, 9–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013287/lh2625sup1.cif

e-64-o1035-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013287/lh2625Isup2.hkl

e-64-o1035-Isup2.hkl (153.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES