Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 14;64(Pt 6):o1076–o1077. doi: 10.1107/S1600536808013883

3-[1-(4-Isobutyl­phen­yl)eth­yl]-6-(4-methyl­phen­yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,, Ibrahim Abdul Razak a, K V Sujith b, P S Patil c, B Kalluraya b, S M Dharmaprakash c
PMCID: PMC2961563  PMID: 21202594

Abstract

In the title compound, C22H24N4S, the methylphenyl and isobutylphenyl rings are inclined at an angle of 79.98 (1)° and they form dihedral angles of 4.59 (1) and 75.47 (1)°, respectively, with the triazolothia­diazole unit. An intra­molecular C—H⋯S hydrogen bond generates an S(5) ring motif. The crystal structure is stabilized by inter­molecular C—H⋯N hydrogen bonds and weak C—H⋯π and π–π inter­actions [centroid–centroid distances between the thia­diazole ring and a symmetry-related phenyl ring and between the triazole ring and the phenyl ring range from 3.5680 (8) to 3.7313 (8) Å].

Related literature

For information on the biological activity of triazole derivatives, thia­diazo­les and triazolothia­diazole compounds, see: Holla et al. (2003); Bekircan & Bektas (2006); Zhou et al. (2007); Bhat et al. (2004); Mathew et al. (2007); Karthikeyan et al. (2007); Chaturvedi et al. (1988); Shawali & Sayed (2006). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related literature, see: Tayseer et al. (2002).graphic file with name e-64-o1076-scheme1.jpg

Experimental

Crystal data

  • C22H24N4S

  • M r = 376.51

  • Triclinic, Inline graphic

  • a = 7.2545 (1) Å

  • b = 8.1764 (1) Å

  • c = 17.6556 (3) Å

  • α = 97.390 (1)°

  • β = 96.120 (1)°

  • γ = 106.240 (1)°

  • V = 984.90 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100.0 (1) K

  • 0.46 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.922, T max = 0.969

  • 15868 measured reflections

  • 5687 independent reflections

  • 4391 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.141

  • S = 1.08

  • 5687 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013883/sj2495sup1.cif

e-64-o1076-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013883/sj2495Isup2.hkl

e-64-o1076-Isup2.hkl (272.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯S1 0.93 2.70 3.1194 (16) 108
C15—H15A⋯N3i 0.93 2.48 3.343 (2) 155
C4—H4ACg1ii 0.93 2.62 3.5063 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C11–C16 ring.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. FHK and IAR also thank the Malaysian Government and Universiti Sains Malaysia for the FRGS grant No. 203/PFIZIK/671064. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Triazoles and their heterocyclic derivatives represent an interesting class of compounds possessing a wide spectrum of biological activity, such as anticancer, anticonvulsant, analgesic, antibacterial, anthelmintic, antitubercular and anti-inflammatory activities (Holla et al., 2003; Bekircan & Bektas, 2006; Zhou et al., 2007). Similarly 1, 3,4-thiadiazoles were also found to possess antitumor, anti-inflammatory, antibacterial, antifungal, anticonvulsant and antitubercular properties (Bhat et al., 2004; Mathew et al., 2007). Thus triazolothiadiazole systems may be viewed as cyclic analogues of two very important components, which often display diverse pharmacological properties. Triazolothiadiazoles obtained by fusing the biolabile 1,2,4-triazole and 1,3,4-thiadiazole rings together have been reported to possess similar biological properties (Karthikeyan et al., 2007; Chaturvedi et al., 1988; Shawali & Sayed 2006) and the crystal structure of the title triazolothiadiazole compound is reported here.

Bond lengths and angles in the title compound (Fig 1) have normal values (Allen et al., 1987). The triazolothiadiazole ring is planar with the maximum deviation of 0.016 (2)Å for atom C7. The planes through the C1—C6 and C11—C16 rings form dihedral angles of 4.59 (1)° and 75.47 (1)° respectively, with the triazolothiadiazole unit. This is also planar with a dihedral angle of 1.34 (2) ° between the two five membered rings. A weak intramolecular C—H···S hydrogen bond generates an S(5) ring motif (Bernstein et al., (1995) and contributes to the planarity of the 4-methylphenyl-triazolothiadiazole portion of the molecule.

The crystal packing is stabilized by intermolecular C—H···N hydrogen bonds and a weak C—H···π interaction involving the C11—C16 ring (centroid Cg1, Table 1). π–π interactions are observed between the thiadiazole ring (S1/C7/N1—N2/C8) and the symmetry related phenyl rings (C1—C6) and between the triazole ring and the phenyl ring (C1—C6) with centroid to centroid distances ranging from 3.5680 (8)–3.7313 (8)Å [symmetry codes:1-X,-Y,1-Z;2-X, -Y,1-Z].

Experimental

A mixture of 4-amino-3-mercapto-5-[1-(4-isobutylphenyl)ethyl]-1, 2,4-triazole (0.01 mol), p-toluic acid (0.01 mol) and 10 ml POCl3 was refluxed on a water bath for about 9 h. Excess of POCl3 was removed under reduced pressure. The reaction mixture was cooled, poured into crushed ice, and neutralized with aqueous ammonia. The resulting solid product was filtered off, washed with water, dried, and recrystallized from a mixture of ethanol and dimethylformamide, 1/1, v/v. (Yield 61%; m.p. 134–1360 C). Analysis (%) for C22H24N4S found (calculated): C 70.16 (70.21), H 6.31 (6.38), N 14.78 (14.89).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.98 Å] and refined using a riding model, with Uiso(H) = -1.2 to -1.5Ueq(C). A rotating-group model was used for the methyl groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C22H24N4S Z = 2
Mr = 376.51 F000 = 400
Triclinic, P1 Dx = 1.270 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 7.2545 (1) Å Cell parameters from 5597 reflections
b = 8.1764 (1) Å θ = 2.6–32.0º
c = 17.6556 (3) Å µ = 0.18 mm1
α = 97.539 (1)º T = 100.0 (1) K
β = 96.712 (1)º Block, colourless
γ = 106.024 (1)º 0.46 × 0.20 × 0.18 mm
V = 984.90 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5687 independent reflections
Radiation source: fine-focus sealed tube 4391 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.029
T = 100.0(1) K θmax = 30.0º
φ and ω scans θmin = 1.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −10→8
Tmin = 0.922, Tmax = 0.969 k = −11→11
15868 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.142   w = 1/[σ2(Fo2) + (0.0792P)2 + 0.0947P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.001
5687 reflections Δρmax = 0.45 e Å3
248 parameters Δρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.65630 (5) 0.70616 (5) 0.50456 (2) 0.02030 (11)
N1 0.77613 (18) 0.91957 (15) 0.40935 (7) 0.0187 (3)
N2 0.73966 (17) 0.75288 (15) 0.37235 (7) 0.0177 (3)
N3 0.6927 (2) 0.50811 (16) 0.29652 (7) 0.0237 (3)
N4 0.6461 (2) 0.47006 (16) 0.36878 (7) 0.0236 (3)
C1 0.8328 (2) 1.23186 (19) 0.51493 (8) 0.0197 (3)
H1A 0.8673 1.2404 0.4662 0.024*
C2 0.8563 (2) 1.3798 (2) 0.56768 (9) 0.0218 (3)
H2A 0.9089 1.4871 0.5541 0.026*
C3 0.8029 (2) 1.3718 (2) 0.64094 (8) 0.0212 (3)
C4 0.7242 (2) 1.2089 (2) 0.65980 (9) 0.0237 (3)
H4A 0.6859 1.2004 0.7080 0.028*
C5 0.7022 (2) 1.0597 (2) 0.60774 (8) 0.0222 (3)
H5A 0.6505 0.9524 0.6214 0.027*
C6 0.7572 (2) 1.06958 (18) 0.53493 (8) 0.0174 (3)
C7 0.7360 (2) 0.91381 (18) 0.47910 (8) 0.0172 (3)
C8 0.6765 (2) 0.62112 (18) 0.41226 (8) 0.0193 (3)
C9 0.7476 (2) 0.67599 (19) 0.29953 (8) 0.0202 (3)
C10 0.8042 (2) 0.7724 (2) 0.23493 (9) 0.0233 (3)
H10A 0.9227 0.8674 0.2557 0.028*
C11 0.6460 (2) 0.85129 (19) 0.20767 (8) 0.0220 (3)
C12 0.4859 (2) 0.75782 (19) 0.15229 (8) 0.0228 (3)
H12A 0.4751 0.6447 0.1309 0.027*
C13 0.3422 (2) 0.8308 (2) 0.12848 (9) 0.0245 (3)
H13A 0.2379 0.7664 0.0907 0.029*
C14 0.3510 (2) 0.99849 (19) 0.15996 (9) 0.0251 (3)
C15 0.5107 (3) 1.0916 (2) 0.21594 (9) 0.0289 (4)
H15A 0.5197 1.2035 0.2384 0.035*
C16 0.6563 (3) 1.0200 (2) 0.23864 (9) 0.0274 (4)
H16A 0.7628 1.0857 0.2752 0.033*
C17 0.8301 (3) 1.5347 (2) 0.69710 (9) 0.0274 (3)
H17A 0.7632 1.5074 0.7397 0.041*
H17B 0.7783 1.6128 0.6715 0.041*
H17C 0.9661 1.5879 0.7160 0.041*
C18 0.8520 (3) 0.6536 (2) 0.17039 (9) 0.0289 (4)
H18A 0.9693 0.6281 0.1885 0.043*
H18B 0.8694 0.7101 0.1263 0.043*
H18C 0.7472 0.5481 0.1560 0.043*
C19 0.1932 (3) 1.0768 (2) 0.13430 (10) 0.0296 (4)
H19A 0.1290 1.0994 0.1780 0.036*
H19B 0.0973 0.9928 0.0947 0.036*
C20 0.2641 (3) 1.2447 (2) 0.10233 (10) 0.0312 (4)
H20A 0.3529 1.3316 0.1440 0.037*
C21 0.3738 (3) 1.2215 (3) 0.03589 (11) 0.0437 (5)
H21A 0.4838 1.1846 0.0532 0.066*
H21B 0.4176 1.3293 0.0178 0.066*
H21C 0.2897 1.1360 −0.0055 0.066*
C22 0.0920 (3) 1.3099 (2) 0.07796 (11) 0.0419 (5)
H22A 0.1372 1.4156 0.0584 0.063*
H22B 0.0298 1.3303 0.1219 0.063*
H22C 0.0008 1.2249 0.0383 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0225 (2) 0.02041 (19) 0.01790 (18) 0.00448 (15) 0.00473 (14) 0.00591 (13)
N1 0.0200 (6) 0.0182 (6) 0.0187 (6) 0.0067 (5) 0.0031 (5) 0.0038 (5)
N2 0.0192 (6) 0.0172 (6) 0.0168 (6) 0.0051 (5) 0.0027 (5) 0.0044 (4)
N3 0.0277 (7) 0.0225 (6) 0.0202 (6) 0.0061 (6) 0.0036 (5) 0.0041 (5)
N4 0.0282 (7) 0.0208 (6) 0.0214 (6) 0.0052 (5) 0.0053 (5) 0.0059 (5)
C1 0.0205 (7) 0.0228 (7) 0.0177 (7) 0.0083 (6) 0.0047 (6) 0.0045 (6)
C2 0.0218 (7) 0.0214 (7) 0.0231 (7) 0.0077 (6) 0.0035 (6) 0.0047 (6)
C3 0.0189 (7) 0.0263 (7) 0.0194 (7) 0.0101 (6) 0.0011 (6) 0.0018 (6)
C4 0.0258 (8) 0.0294 (8) 0.0172 (7) 0.0096 (7) 0.0051 (6) 0.0039 (6)
C5 0.0250 (8) 0.0234 (7) 0.0194 (7) 0.0071 (6) 0.0051 (6) 0.0061 (6)
C6 0.0153 (7) 0.0208 (7) 0.0169 (6) 0.0073 (6) 0.0012 (5) 0.0031 (5)
C7 0.0146 (6) 0.0197 (7) 0.0180 (7) 0.0052 (5) 0.0019 (5) 0.0056 (5)
C8 0.0185 (7) 0.0195 (7) 0.0201 (7) 0.0043 (6) 0.0035 (6) 0.0064 (5)
C9 0.0219 (7) 0.0204 (7) 0.0177 (7) 0.0067 (6) 0.0016 (6) 0.0020 (5)
C10 0.0273 (8) 0.0236 (7) 0.0187 (7) 0.0064 (6) 0.0051 (6) 0.0040 (6)
C11 0.0302 (8) 0.0198 (7) 0.0163 (6) 0.0055 (6) 0.0069 (6) 0.0057 (5)
C12 0.0314 (8) 0.0183 (7) 0.0189 (7) 0.0062 (6) 0.0071 (6) 0.0032 (5)
C13 0.0310 (8) 0.0214 (7) 0.0189 (7) 0.0045 (6) 0.0039 (6) 0.0031 (6)
C14 0.0357 (9) 0.0217 (7) 0.0201 (7) 0.0095 (7) 0.0065 (7) 0.0072 (6)
C15 0.0447 (10) 0.0174 (7) 0.0231 (8) 0.0091 (7) 0.0002 (7) 0.0030 (6)
C16 0.0370 (9) 0.0202 (7) 0.0205 (7) 0.0032 (7) −0.0003 (7) 0.0028 (6)
C17 0.0321 (9) 0.0292 (8) 0.0207 (7) 0.0132 (7) 0.0005 (7) −0.0020 (6)
C18 0.0312 (9) 0.0353 (9) 0.0238 (8) 0.0140 (7) 0.0078 (7) 0.0060 (7)
C19 0.0377 (9) 0.0277 (8) 0.0259 (8) 0.0134 (7) 0.0049 (7) 0.0053 (6)
C20 0.0482 (11) 0.0217 (7) 0.0235 (8) 0.0140 (8) −0.0024 (7) 0.0024 (6)
C21 0.0660 (14) 0.0411 (11) 0.0307 (9) 0.0211 (10) 0.0107 (9) 0.0158 (8)
C22 0.0616 (13) 0.0302 (9) 0.0340 (10) 0.0234 (9) −0.0081 (9) −0.0010 (7)

Geometric parameters (Å, °)

S1—C8 1.7248 (15) C12—C13 1.388 (2)
S1—C7 1.7714 (14) C12—H12A 0.9300
N1—C7 1.3018 (18) C13—C14 1.391 (2)
N1—N2 1.3716 (17) C13—H13A 0.9300
N2—C8 1.3672 (18) C14—C15 1.395 (2)
N2—C9 1.3699 (18) C14—C19 1.511 (2)
N3—C9 1.3113 (19) C15—C16 1.387 (2)
N3—N4 1.4092 (18) C15—H15A 0.9300
N4—C8 1.3133 (19) C16—H16A 0.9300
C1—C2 1.383 (2) C17—H17A 0.9600
C1—C6 1.397 (2) C17—H17B 0.9600
C1—H1A 0.9300 C17—H17C 0.9600
C2—C3 1.397 (2) C18—H18A 0.9600
C2—H2A 0.9300 C18—H18B 0.9600
C3—C4 1.397 (2) C18—H18C 0.9600
C3—C17 1.503 (2) C19—C20 1.533 (2)
C4—C5 1.386 (2) C19—H19A 0.9700
C4—H4A 0.9300 C19—H19B 0.9700
C5—C6 1.395 (2) C20—C21 1.513 (3)
C5—H5A 0.9300 C20—C22 1.527 (3)
C6—C7 1.464 (2) C20—H20A 0.9800
C9—C10 1.503 (2) C21—H21A 0.9600
C10—C11 1.525 (2) C21—H21B 0.9600
C10—C18 1.533 (2) C21—H21C 0.9600
C10—H10A 0.9800 C22—H22A 0.9600
C11—C12 1.392 (2) C22—H22B 0.9600
C11—C16 1.394 (2) C22—H22C 0.9600
C8—S1—C7 87.77 (7) C12—C13—H13A 119.3
C7—N1—N2 107.74 (12) C14—C13—H13A 119.3
C8—N2—C9 105.94 (12) C13—C14—C15 117.59 (15)
C8—N2—N1 118.63 (12) C13—C14—C19 121.14 (15)
C9—N2—N1 135.41 (12) C15—C14—C19 121.27 (14)
C9—N3—N4 109.48 (12) C16—C15—C14 121.08 (14)
C8—N4—N3 104.93 (12) C16—C15—H15A 119.5
C2—C1—C6 119.97 (13) C14—C15—H15A 119.5
C2—C1—H1A 120.0 C15—C16—C11 121.19 (15)
C6—C1—H1A 120.0 C15—C16—H16A 119.4
C1—C2—C3 121.54 (14) C11—C16—H16A 119.4
C1—C2—H2A 119.2 C3—C17—H17A 109.5
C3—C2—H2A 119.2 C3—C17—H17B 109.5
C4—C3—C2 118.01 (14) H17A—C17—H17B 109.5
C4—C3—C17 121.60 (14) C3—C17—H17C 109.5
C2—C3—C17 120.39 (14) H17A—C17—H17C 109.5
C5—C4—C3 120.94 (14) H17B—C17—H17C 109.5
C5—C4—H4A 119.5 C10—C18—H18A 109.5
C3—C4—H4A 119.5 C10—C18—H18B 109.5
C4—C5—C6 120.46 (14) H18A—C18—H18B 109.5
C4—C5—H5A 119.8 C10—C18—H18C 109.5
C6—C5—H5A 119.8 H18A—C18—H18C 109.5
C5—C6—C1 119.07 (13) H18B—C18—H18C 109.5
C5—C6—C7 121.42 (13) C14—C19—C20 114.77 (15)
C1—C6—C7 119.50 (12) C14—C19—H19A 108.6
N1—C7—C6 122.53 (13) C20—C19—H19A 108.6
N1—C7—S1 116.63 (11) C14—C19—H19B 108.6
C6—C7—S1 120.84 (10) C20—C19—H19B 108.6
N4—C8—N2 111.28 (13) H19A—C19—H19B 107.6
N4—C8—S1 139.48 (11) C21—C20—C22 111.13 (15)
N2—C8—S1 109.21 (10) C21—C20—C19 111.68 (14)
N3—C9—N2 108.36 (13) C22—C20—C19 109.77 (16)
N3—C9—C10 127.27 (13) C21—C20—H20A 108.0
N2—C9—C10 124.35 (13) C22—C20—H20A 108.0
C9—C10—C11 109.88 (13) C19—C20—H20A 108.0
C9—C10—C18 109.90 (13) C20—C21—H21A 109.5
C11—C10—C18 113.81 (13) C20—C21—H21B 109.5
C9—C10—H10A 107.7 H21A—C21—H21B 109.5
C11—C10—H10A 107.7 C20—C21—H21C 109.5
C18—C10—H10A 107.7 H21A—C21—H21C 109.5
C12—C11—C16 117.76 (15) H21B—C21—H21C 109.5
C12—C11—C10 121.62 (13) C20—C22—H22A 109.5
C16—C11—C10 120.61 (14) C20—C22—H22B 109.5
C13—C12—C11 120.99 (14) H22A—C22—H22B 109.5
C13—C12—H12A 119.5 C20—C22—H22C 109.5
C11—C12—H12A 119.5 H22A—C22—H22C 109.5
C12—C13—C14 121.37 (15) H22B—C22—H22C 109.5
C7—N1—N2—C8 −1.13 (17) N4—N3—C9—N2 0.11 (17)
C7—N1—N2—C9 177.66 (15) N4—N3—C9—C10 −178.01 (14)
C9—N3—N4—C8 −0.02 (17) C8—N2—C9—N3 −0.16 (16)
C6—C1—C2—C3 −1.1 (2) N1—N2—C9—N3 −179.05 (14)
C1—C2—C3—C4 −0.1 (2) C8—N2—C9—C10 178.03 (14)
C1—C2—C3—C17 −179.98 (13) N1—N2—C9—C10 −0.9 (3)
C2—C3—C4—C5 0.9 (2) N3—C9—C10—C11 108.16 (17)
C17—C3—C4—C5 −179.20 (14) N2—C9—C10—C11 −69.68 (18)
C3—C4—C5—C6 −0.5 (2) N3—C9—C10—C18 −17.8 (2)
C4—C5—C6—C1 −0.6 (2) N2—C9—C10—C18 164.34 (14)
C4—C5—C6—C7 179.78 (13) C9—C10—C11—C12 −85.94 (17)
C2—C1—C6—C5 1.4 (2) C18—C10—C11—C12 37.8 (2)
C2—C1—C6—C7 −178.96 (13) C9—C10—C11—C16 93.15 (17)
N2—N1—C7—C6 −179.59 (12) C18—C10—C11—C16 −143.13 (15)
N2—N1—C7—S1 1.19 (15) C16—C11—C12—C13 0.4 (2)
C5—C6—C7—N1 176.10 (14) C10—C11—C12—C13 179.48 (13)
C1—C6—C7—N1 −3.5 (2) C11—C12—C13—C14 −1.2 (2)
C5—C6—C7—S1 −4.72 (19) C12—C13—C14—C15 0.6 (2)
C1—C6—C7—S1 175.70 (11) C12—C13—C14—C19 −179.48 (14)
C8—S1—C7—N1 −0.81 (12) C13—C14—C15—C16 0.7 (2)
C8—S1—C7—C6 179.96 (12) C19—C14—C15—C16 −179.20 (15)
N3—N4—C8—N2 −0.09 (16) C14—C15—C16—C11 −1.5 (3)
N3—N4—C8—S1 178.05 (14) C12—C11—C16—C15 0.9 (2)
C9—N2—C8—N4 0.15 (17) C10—C11—C16—C15 −178.18 (14)
N1—N2—C8—N4 179.27 (12) C13—C14—C19—C20 −122.58 (16)
C9—N2—C8—S1 −178.56 (10) C15—C14—C19—C20 57.3 (2)
N1—N2—C8—S1 0.55 (16) C14—C19—C20—C21 55.9 (2)
C7—S1—C8—N4 −178.04 (19) C14—C19—C20—C22 179.58 (14)
C7—S1—C8—N2 0.12 (11)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5A···S1 0.93 2.70 3.1194 (16) 108
C15—H15A···N3i 0.93 2.48 3.343 (2) 155
C4—H4A···Cg1ii 0.93 2.62 3.5063 160

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2495).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bekircan, O. & Bektas, H. (2006). Molecules, 11, 469–477. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bhat, K. S., Prasad, D. J., Poojary, B. & Holla, B. S. (2004). Phosphorus, Sulfur Silicon, 179, 1595–1603.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chaturvedi, B., Tiwari, N. and Nizamuddin. (1988). Agric. Biol. Chem.52, 1229–1232.
  7. Holla, B. S., Veerendra, B., Shivananda, M. K. & Poojary, B. (2003). Eur. J. Med. Chem 38, 759–767. [DOI] [PubMed]
  8. Karthikeyan, M. S., Holla, B. S., Kalluraya, B. & Kumari, N. S. (2007). Monatsh. Chem 138, 1309–1316.
  9. Mathew, V., Keshavayya, J., Vaidya, V. P. & Giles, D. (2007). Eur. J. Med. Chem 42, 823–840. [DOI] [PubMed]
  10. Shawali, A. S. & Sayed, A. R. (2006). J. Sulfur Chem 27, 233–244.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  13. Tayseer, A. A., Manal, A. D. & Hamdi, M. H. (2002). Molecules, 7, 494–500.
  14. Zhou, S., Zhang, L., Jin, J., Zhang, A., Lei, X., Lin, J., He, J. & Zhang, H. (2007). Phosphorus, Sulfur Silicon, 182, 419–432.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808013883/sj2495sup1.cif

e-64-o1076-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013883/sj2495Isup2.hkl

e-64-o1076-Isup2.hkl (272.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES