Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o950. doi: 10.1107/S1600536808012385

N-(2,4-Dichloro­phen­yl)benzamide

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, B P Sowmya a, Hartmut Fuess c
PMCID: PMC2961566  PMID: 21202684

Abstract

The conformations of the N—H and C=O bonds in the structure of the title compound, C13H9Cl2NO, are anti to each other, similar to that observed in N-phenyl­benzamide, N-(2-chloro­phen­yl)benzamide, N-(4-chloro­phen­yl)benzamide, N-(2,3-dichloro­phen­yl)benzamide, N-(2,6-dichloro­phen­yl)benzamide and other benzanilides. The amide –NHCO– group forms a dihedral angle of 33.0 (2)° with the benzoyl ring, while the rings are almost coplanar, making a dihedral angle of 2.6 (2)°). The mol­ecules are linked by N—H⋯O hydrogen bonds into infinite chains running along the b axis.

Related literature

For related literature, see: Gowda et al. (2003, 2007a ,b , 2008a ,b ).graphic file with name e-64-0o950-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO

  • M r = 266.11

  • Monoclinic, Inline graphic

  • a = 11.7388 (6) Å

  • b = 4.7475 (2) Å

  • c = 22.8630 (11) Å

  • β = 106.360 (4)°

  • V = 1222.56 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 295 (2) K

  • 0.33 × 0.06 × 0.03 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)] T min = 0.905, T max = 0.987

  • 11465 measured reflections

  • 2311 independent reflections

  • 1209 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.089

  • S = 1.06

  • 2311 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012385/om2232sup1.cif

e-64-0o950-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012385/om2232Isup2.hkl

e-64-0o950-Isup2.hkl (111.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.805 (16) 2.178 (19) 2.899 (2) 149 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

In the present work, the structure of N-(2,4-dichlorophenyl)-benzamide (N24DCPBA) has been determined to study the effect of substituents on the structures of benzanilides (Gowda et al., 2003, 2007a,b, 2008a,b). The conformations of the N—H and C=O bonds in the structure of N24DCPBA (Fig.1) are anti to each other, similar to that observed in N-(phenyl)-benzamide (NPBA) (Gowda et al., 2003), N-(2-chlorophenyl)-benzamide (N2CPBA), N-(4-chlorophenyl)-benzamide (N4CPBA), N-(2,3-dichlorophenyl)-benzamide(N23DCPBA), N-(2,6-dichlorophenyl)-benzamide (N26DCPBA) and other benzanilides (Gowda et al., 2007a,b, 2008a,b). The bond parameters in N24DCPBA are similar to those in NPBA, N2CPBA, N4CPBA, N23DCPBA, N26DCPBA and other benzanilides. The amide group –NHCO– forms the dihedral angle of 33.0 (2)° with the benzoyl ring, while the benzoyl and aniline rings are almost coplanar, with the dihedral angle of 2.6 (2)°). Part of the crystal structure of the title compound with infinite molecular chains running in the [010] direction is shown in Fig. 2. The chains are generated by N—H···O(i) hydrogen bonds (Table 1) [symmetry operation (i): x,y - 1,z].

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

H atoms attached to C atoms were placed in calculated positions and subsequently treated as riding with C–H distance 0.93 Å. H atom of the amide group was refined with the N—H distance restrained to 0.81 (2) Å. The Uiso(H) values were set at 1.2 Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with infinite molecular chains running in the [010] direction. The chains are generated by N—H···O(i) hydrogen bonds.[Symmetry operation (i): x,y - 1,z]. H atoms not involved in intermolecular bonding have been omitted.

Crystal data

C13H9Cl2NO F000 = 544
Mr = 266.11 Dx = 1.446 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2675 reflections
a = 11.7388 (6) Å θ = 3.5–29.1º
b = 4.7475 (2) Å µ = 0.51 mm1
c = 22.8630 (11) Å T = 295 (2) K
β = 106.360 (4)º Needle, colorless
V = 1222.56 (10) Å3 0.33 × 0.06 × 0.03 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer 2311 independent reflections
Monochromator: graphite 1209 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.060
T = 295(2) K θmax = 25.7º
ω scans with κ offsets θmin = 5.1º
Absorption correction: analytical[CrysAlis RED (Oxford Diffraction, 2007), based on expressions derived by Clark & Reid (1995)] h = −14→14
Tmin = 0.905, Tmax = 0.987 k = −5→5
11465 measured reflections l = −27→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089   [exp(3(sinθ/λ)2)]/ [σ2(Fo2) + (0.0389P)2] where P = 0.33333Fo2 + 0.66667Fc2
S = 1.06 (Δ/σ)max = 0.002
2311 reflections Δρmax = 0.21 e Å3
157 parameters Δρmin = −0.16 e Å3
1 restraint Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0522 (2) 0.6218 (5) 0.12848 (10) 0.0496 (6)
C2 1.1434 (2) 0.5105 (5) 0.18272 (10) 0.0528 (6)
C3 1.2566 (3) 0.6149 (6) 0.19551 (12) 0.0702 (7)
H3 1.2743 0.7524 0.1704 0.084*
C4 1.3453 (3) 0.5182 (7) 0.24537 (14) 0.0849 (9)
H4 1.4223 0.5874 0.2533 0.102*
C5 1.3184 (4) 0.3218 (8) 0.28242 (14) 0.0893 (10)
H5 1.3774 0.2567 0.316 0.107*
C6 1.2056 (4) 0.2184 (6) 0.27103 (12) 0.0877 (10)
H6 1.1882 0.0849 0.297 0.105*
C7 1.1172 (3) 0.3122 (5) 0.22083 (11) 0.0677 (7)
H7 1.0405 0.2413 0.213 0.081*
C8 0.8686 (2) 0.4974 (4) 0.04960 (9) 0.0457 (6)
C9 0.8747 (2) 0.6864 (4) 0.00429 (10) 0.0518 (6)
H9 0.9462 0.7762 0.0064 0.062*
C10 0.7767 (2) 0.7427 (5) −0.04370 (10) 0.0597 (7)
H10 0.7814 0.8708 −0.0737 0.072*
C11 0.6721 (2) 0.6086 (6) −0.04695 (11) 0.0611 (7)
C12 0.6630 (2) 0.4146 (5) −0.00389 (11) 0.0610 (7)
H12 0.5919 0.3208 −0.0071 0.073*
C13 0.7617 (2) 0.3632 (5) 0.04400 (10) 0.0510 (6)
N1 0.96721 (19) 0.4383 (4) 0.09966 (8) 0.0513 (5)
H1N 0.972 (2) 0.276 (4) 0.1100 (10) 0.062*
O1 1.05520 (15) 0.8645 (3) 0.11131 (7) 0.0687 (5)
Cl1 0.75028 (6) 0.12644 (14) 0.09989 (3) 0.0705 (2)
Cl2 0.54660 (7) 0.6883 (2) −0.10654 (3) 0.1010 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0601 (15) 0.0357 (14) 0.0511 (13) 0.0050 (13) 0.0128 (12) −0.0020 (11)
C2 0.0646 (18) 0.0412 (13) 0.0492 (13) 0.0076 (13) 0.0102 (12) −0.0042 (11)
C3 0.0695 (19) 0.0686 (18) 0.0653 (17) 0.0051 (16) 0.0073 (14) 0.0003 (13)
C4 0.071 (2) 0.099 (2) 0.073 (2) 0.0125 (19) 0.0002 (17) −0.0152 (19)
C5 0.100 (3) 0.089 (2) 0.0600 (19) 0.036 (2) −0.0077 (18) −0.0101 (17)
C6 0.131 (3) 0.072 (2) 0.0491 (16) 0.016 (2) 0.0083 (18) 0.0054 (14)
C7 0.093 (2) 0.0550 (17) 0.0504 (14) 0.0032 (15) 0.0121 (14) 0.0012 (12)
C8 0.0541 (16) 0.0349 (12) 0.0482 (13) 0.0057 (12) 0.0146 (11) −0.0021 (11)
C9 0.0556 (15) 0.0437 (14) 0.0557 (14) 0.0016 (12) 0.0150 (12) 0.0043 (11)
C10 0.0700 (19) 0.0588 (15) 0.0510 (14) 0.0114 (14) 0.0184 (13) 0.0099 (12)
C11 0.0547 (17) 0.0721 (17) 0.0526 (14) 0.0143 (15) 0.0086 (12) −0.0020 (14)
C12 0.0549 (16) 0.0659 (17) 0.0645 (16) −0.0021 (13) 0.0205 (13) −0.0069 (14)
C13 0.0566 (16) 0.0454 (13) 0.0541 (14) 0.0010 (13) 0.0204 (12) −0.0024 (11)
N1 0.0636 (13) 0.0342 (11) 0.0531 (11) 0.0008 (11) 0.0117 (10) 0.0065 (9)
O1 0.0800 (12) 0.0347 (10) 0.0776 (11) −0.0009 (9) −0.0003 (9) 0.0063 (8)
Cl1 0.0783 (5) 0.0633 (4) 0.0772 (4) −0.0034 (4) 0.0339 (4) 0.0109 (3)
Cl2 0.0706 (5) 0.1426 (8) 0.0752 (5) 0.0183 (5) −0.0033 (4) 0.0119 (4)

Geometric parameters (Å, °)

C1—O1 1.221 (2) C8—C13 1.380 (3)
C1—N1 1.348 (3) C8—C9 1.388 (3)
C1—C2 1.488 (3) C8—N1 1.408 (3)
C2—C3 1.371 (3) C9—C10 1.374 (3)
C2—C7 1.375 (3) C9—H9 0.93
C3—C4 1.387 (4) C10—C11 1.366 (3)
C3—H3 0.93 C10—H10 0.93
C4—C5 1.356 (4) C11—C12 1.374 (3)
C4—H4 0.93 C11—Cl2 1.743 (2)
C5—C6 1.366 (5) C12—C13 1.374 (3)
C5—H5 0.93 C12—H12 0.93
C6—C7 1.387 (4) C13—Cl1 1.735 (2)
C6—H6 0.93 N1—H1N 0.805 (16)
C7—H7 0.93
O1—C1—N1 122.5 (2) C13—C8—C9 117.8 (2)
O1—C1—C2 121.6 (2) C13—C8—N1 120.1 (2)
N1—C1—C2 115.9 (2) C9—C8—N1 122.2 (2)
C3—C2—C7 119.3 (2) C10—C9—C8 120.9 (2)
C3—C2—C1 118.4 (2) C10—C9—H9 119.5
C7—C2—C1 122.3 (2) C8—C9—H9 119.5
C2—C3—C4 120.9 (3) C11—C10—C9 119.4 (2)
C2—C3—H3 119.6 C11—C10—H10 120.3
C4—C3—H3 119.6 C9—C10—H10 120.3
C5—C4—C3 119.2 (3) C10—C11—C12 121.6 (2)
C5—C4—H4 120.4 C10—C11—Cl2 119.3 (2)
C3—C4—H4 120.4 C12—C11—Cl2 119.1 (2)
C4—C5—C6 120.8 (3) C13—C12—C11 118.1 (2)
C4—C5—H5 119.6 C13—C12—H12 120.9
C6—C5—H5 119.6 C11—C12—H12 120.9
C5—C6—C7 120.1 (3) C12—C13—C8 122.2 (2)
C5—C6—H6 119.9 C12—C13—Cl1 118.62 (19)
C7—C6—H6 119.9 C8—C13—Cl1 119.18 (17)
C2—C7—C6 119.7 (3) C1—N1—C8 126.45 (18)
C2—C7—H7 120.2 C1—N1—H1N 119.5 (18)
C6—C7—H7 120.2 C8—N1—H1N 114.0 (18)
O1—C1—C2—C3 −31.9 (3) C9—C10—C11—C12 −1.2 (4)
N1—C1—C2—C3 147.8 (2) C9—C10—C11—Cl2 178.01 (17)
O1—C1—C2—C7 146.7 (2) C10—C11—C12—C13 1.7 (4)
N1—C1—C2—C7 −33.6 (3) Cl2—C11—C12—C13 −177.46 (18)
C7—C2—C3—C4 1.6 (4) C11—C12—C13—C8 −0.6 (3)
C1—C2—C3—C4 −179.8 (2) C11—C12—C13—Cl1 178.13 (19)
C2—C3—C4—C5 −1.3 (4) C9—C8—C13—C12 −1.0 (3)
C3—C4—C5—C6 0.2 (4) N1—C8—C13—C12 179.8 (2)
C4—C5—C6—C7 0.5 (4) C9—C8—C13—Cl1 −179.73 (16)
C3—C2—C7—C6 −0.8 (4) N1—C8—C13—Cl1 1.0 (3)
C1—C2—C7—C6 −179.4 (2) O1—C1—N1—C8 −3.9 (4)
C5—C6—C7—C2 −0.2 (4) C2—C1—N1—C8 176.4 (2)
C13—C8—C9—C10 1.6 (3) C13—C8—N1—C1 −145.5 (2)
N1—C8—C9—C10 −179.2 (2) C9—C8—N1—C1 35.3 (3)
C8—C9—C10—C11 −0.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.805 (16) 2.178 (19) 2.899 (2) 149 (2)

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2232).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  6. Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007a). Acta Cryst. E63, o2906. [DOI] [PMC free article] [PubMed]
  7. Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, o3326. [DOI] [PMC free article] [PubMed]
  8. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o540. [DOI] [PMC free article] [PubMed]
  9. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o769. [DOI] [PMC free article] [PubMed]
  10. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012385/om2232sup1.cif

e-64-0o950-sup1.cif (16.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012385/om2232Isup2.hkl

e-64-0o950-Isup2.hkl (111.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES