Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1048. doi: 10.1107/S160053680801338X

4-(4-Ethyl­phenyl­diazen­yl)phenol

Joost de Wit a, Gert O R Alberda van Ekenstein a, Gerrit ten Brinke a, Auke Meetsma b,*
PMCID: PMC2961569  PMID: 21202567

Abstract

The crystal structure of the title compound, C14H14N2O, determined at 100 K, shows that the mol­ecules are not planar in the solid state, in contrast to other diazene (azobenzene) derivatives. The dihedral angle between the planes of the two aromatic rings is 42.32 (7)°. The mol­ecules are linked by inter­molecular O—H⋯N hydrogen bonds, forming an infinite one-dimensional chain.

Related literature

For related literature, see: Bowes et al. (2003); Brown et al. (1971); Burger & Ramberger (1979); Enkelmann et al. (1978); Kageyama et al. (1982, 1985, 1986); Kashino et al. (1979); Kocaokutgen et al. (2003); McWilliam et al. (2001); Okamoto et al. (1983); Okamoto & Nakano (1994); Ruokolainen et al. (1996, 1998, 1999); Shibaev et al. (2003); Soylu et al. (2004); Zhang et al. (1998).graphic file with name e-64-o1048-scheme1.jpg

Experimental

Crystal data

  • C14H14N2O

  • M r = 226.28

  • Monoclinic, Inline graphic

  • a = 7.5261 (9) Å

  • b = 13.4298 (15) Å

  • c = 11.6412 (13) Å

  • β = 97.4001 (15)°

  • V = 1166.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 (1) K

  • 0.42 × 0.33 × 0.22 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.956, T max = 0.982

  • 8700 measured reflections

  • 2276 independent reflections

  • 1848 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.04

  • 2276 reflections

  • 210 parameters

  • All H-atom parameters refined

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and PLUTO (Meetsma, 2007); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801338X/bg2174sup1.cif

e-64-o1048-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801338X/bg2174Isup2.hkl

e-64-o1048-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.91 (2) 1.98 (2) 2.8316 (15) 154.7 (17)
C3—H3⋯O1ii 0.987 (15) 2.585 (15) 3.3541 (17) 134.7 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Albert Kiewiet is acknowledged for performing the MS analysis.

supplementary crystallographic information

Comment

Azobenzenes are widely used as dyes, but also as photochemical switch using photo-isomerization by UV light to induce a conformational change from trans to cis and back. This principle has been explored extensively in order to exploit the isomerization for several applications. (Shibaev et al., 2003) The presence of the phenolic moiety makes it possible to form complexes with e.g. poly (4-vinylpyridine) homopolymer or with poly (4-vinylpyridine) containing block copolymers. These supramolecular comb-like polymeric structures give rise to hierarchical structure-in-structure morphologies comparable with the systems with poly (4-vinylpyridine) containing block co-polymers complexed with nona- or pentadecylphenol. (Ruokolainen et al., 1998, 1999) The molecular geometry of (I) and the adopted atom-numbering scheme are shown in the perspective view in Figure 1. The crystal structure is similar to several other azo compounds, (Kocaokutgen et al. 2003; Soylu et al. 2004; Zhang et al., 1998) The –N1=N2- bond length is 1.2636 (16) Å, indicating a double-bond character. Regarding the azo double bond the rings are in a trans configuration. In contrast to many other azocompounds the benzene rings of EPAP are not coplanar.

Experimental

To a vigorously stirred solution of 1.21 g of ethylaniline (0.01 mol) in 3 ml of water and 3 ml of concentrated hydrochloric acid, a solution of 2.8 g sodiumnitrite in 20 ml water was added drop wise while maintaining the temperature during the reaction at 0 °C. The resulting pale yellow mixture was added drop wise to a phenolate ion solution which was prepared by dissolving 0.94 g phenol (0.01 mol) and 0.84 g potassium hydroxide (0.015 mol) in 20 ml of methanol. Dichloromethane was used to extract the product from the aquatic reaction mixture, followed by 5 times washing with water. The solvent was then removed by evaporation. Subsequently the crude product was purified over a silica gel column using a dichloromethane / n-hexane mixture (3:1 v/v). The final solution was evaporated to dryness and dried further overnight in vacuum at 40°C. The yield of the bright orange crystalline solid was 61%. Single crystals of (I) suitable for the x-ray analysis were grown by slow evaporation from a dichloromethane solution at room temperature in air.

Analysis Differential Scanning Calorimetry (DSC, Q1000 TA instruments; 10°C/min): melting point (onset) 120°C. H-NMR (Varian VXR 300 MHz, CDCl3): δ p.p.m. = 7.85 (d, 2H, H-3 and H-5), 7.79 p.p.m. (d, 2H, H-3' and H-5'), 7.31 p.p.m. (d, 2H, H-2' and H-6'), 6.92 p.p.m. (d, 2H, H-2 and H-6), 5.09 p.p.m. (s, 1H, –OH), 2.67 p.p.m. (t, 2H, HA), 1.57 p.p.m. (m, 2H, –CH2-)), 1.26 p.p.m. (t, 3H, CH3—CH2). Mass (Jeol JMS 600H EI+ 70 eV): m/z = 226 (calculated: 226.3)

Refinement

All hydrogen atoms were located in a difference Fourier map and refined with isotropic displacement parameters.

C—H distances spanned the range of 0.943 (16)–1.011 (18) Å, and U(H) factors, 0.054 (6) to 0.019 (4) Å-2.

Figures

Fig. 1.

Fig. 1.

Perspective ORTEP drawing of (I) with the atom-labeling scheme of the non-hydrogen atoms. All atoms are represented by their displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing view of (I), showing the hydrogen bonds as dashed lines. Symmetry codes, as in Table 1.

Crystal data

C14H14N2O F000 = 480
Mr = 226.28 Dx = 1.288 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3059 reflections
a = 7.5261 (9) Å θ = 3.0–27.5º
b = 13.4298 (15) Å µ = 0.08 mm1
c = 11.6412 (13) Å T = 100 (1) K
β = 97.4001 (15)º Block, orange
V = 1166.8 (2) Å3 0.42 × 0.33 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2276 independent reflections
Monochromator: parallel mounted graphite 1848 reflections with I > 2σ(I)
Detector resolution: 66.06 pixels mm-1 Rint = 0.028
T = 100(1) K θmax = 26.0º
φ and ω scans θmin = 3.0º
Absorption correction: multi-scan(SADABS; Bruker, 2007) h = −9→9
Tmin = 0.956, Tmax = 0.982 k = −16→15
8700 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 All H-atom parameters refined
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2293P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2276 reflections Δρmax = 0.17 e Å3
210 parameters Δρmin = −0.24 e Å3
Primary atom site location: heavy-atom method Extinction correction: none

Special details

Experimental. The final unit cell was obtained from the xyz centroids of 3059 reflections after integration using the SAINTPLUS software package (Bruker, 2007).Reduced cell calculations did not indicate any higher metric lattice symmetry and examination of the final atomic coordinates of the structure did not yield extra symmetry elements (Spek, 1988; Le Page 1987, 1988)
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.04406 (14) 0.48064 (7) 0.32923 (9) 0.0263 (3)
N1 0.80788 (15) 0.08833 (8) 0.34477 (9) 0.0188 (3)
N2 0.75956 (15) 0.06025 (8) 0.43960 (10) 0.0199 (3)
C1 0.98453 (18) 0.38503 (10) 0.32795 (11) 0.0193 (4)
C2 0.99777 (18) 0.31861 (10) 0.23708 (12) 0.0201 (4)
C3 0.93839 (18) 0.22132 (10) 0.24543 (12) 0.0190 (4)
C4 0.86411 (17) 0.18959 (10) 0.34290 (11) 0.0175 (4)
C5 0.84621 (18) 0.25739 (10) 0.43237 (12) 0.0190 (4)
C6 0.90547 (18) 0.35397 (10) 0.42467 (12) 0.0204 (4)
C7 0.69280 (17) −0.03918 (10) 0.43646 (12) 0.0190 (4)
C8 0.59745 (19) −0.08196 (11) 0.33765 (12) 0.0223 (4)
C9 0.53750 (19) −0.17915 (11) 0.34156 (13) 0.0232 (4)
C10 0.57357 (18) −0.23637 (10) 0.44256 (12) 0.0214 (4)
C11 0.66447 (19) −0.19152 (11) 0.54092 (13) 0.0228 (4)
C12 0.72082 (19) −0.09323 (11) 0.53944 (12) 0.0216 (4)
C13 0.5212 (2) −0.34494 (11) 0.44295 (14) 0.0260 (5)
C14 0.6554 (2) −0.41051 (12) 0.39094 (16) 0.0298 (5)
H1 1.096 (3) 0.4963 (14) 0.2651 (19) 0.054 (6)*
H2 1.0497 (19) 0.3401 (11) 0.1707 (13) 0.025 (4)*
H3 0.9523 (19) 0.1728 (11) 0.1835 (13) 0.022 (4)*
H5 0.7933 (19) 0.2348 (10) 0.4993 (13) 0.019 (4)*
H6 0.894 (2) 0.4036 (11) 0.4876 (13) 0.023 (4)*
H8 0.569 (2) −0.0420 (12) 0.2682 (14) 0.026 (4)*
H9 0.472 (2) −0.2076 (11) 0.2751 (14) 0.025 (4)*
H11 0.690 (2) −0.2308 (11) 0.6131 (13) 0.023 (4)*
H12 0.781 (2) −0.0609 (11) 0.6080 (14) 0.027 (4)*
H13 0.515 (2) −0.3675 (13) 0.5252 (16) 0.043 (5)*
H13' 0.401 (2) −0.3550 (12) 0.3973 (15) 0.038 (5)*
H14 0.779 (3) −0.4016 (13) 0.4330 (16) 0.047 (5)*
H14' 0.662 (2) −0.3941 (13) 0.3112 (17) 0.041 (5)*
H14" 0.624 (2) −0.4825 (13) 0.3936 (15) 0.038 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0395 (6) 0.0160 (5) 0.0260 (6) −0.0050 (4) 0.0138 (5) −0.0013 (4)
N1 0.0182 (6) 0.0180 (6) 0.0204 (6) 0.0009 (4) 0.0032 (5) 0.0016 (5)
N2 0.0207 (6) 0.0169 (6) 0.0224 (6) 0.0011 (4) 0.0042 (5) 0.0009 (5)
C1 0.0215 (7) 0.0149 (7) 0.0211 (7) 0.0007 (5) 0.0017 (5) 0.0019 (5)
C2 0.0220 (7) 0.0201 (7) 0.0186 (7) 0.0004 (5) 0.0046 (5) 0.0025 (6)
C3 0.0197 (7) 0.0176 (7) 0.0195 (7) 0.0015 (5) 0.0020 (5) −0.0015 (6)
C4 0.0173 (7) 0.0148 (7) 0.0202 (7) 0.0009 (5) 0.0017 (5) 0.0000 (5)
C5 0.0196 (7) 0.0195 (7) 0.0184 (7) 0.0020 (5) 0.0042 (5) 0.0022 (5)
C6 0.0241 (7) 0.0175 (7) 0.0201 (7) 0.0018 (5) 0.0044 (6) −0.0026 (5)
C7 0.0180 (7) 0.0155 (7) 0.0244 (7) 0.0017 (5) 0.0067 (5) −0.0003 (5)
C8 0.0214 (7) 0.0216 (8) 0.0240 (7) 0.0006 (6) 0.0037 (6) 0.0038 (6)
C9 0.0212 (7) 0.0235 (8) 0.0248 (8) −0.0027 (6) 0.0029 (6) −0.0026 (6)
C10 0.0173 (7) 0.0185 (7) 0.0298 (8) −0.0005 (5) 0.0082 (6) −0.0005 (6)
C11 0.0231 (7) 0.0205 (8) 0.0253 (8) 0.0012 (6) 0.0048 (6) 0.0059 (6)
C12 0.0220 (8) 0.0219 (8) 0.0210 (7) −0.0004 (6) 0.0034 (6) −0.0001 (6)
C13 0.0258 (8) 0.0192 (8) 0.0341 (9) −0.0036 (6) 0.0078 (7) 0.0008 (6)
C14 0.0288 (9) 0.0209 (8) 0.0398 (10) −0.0010 (6) 0.0044 (7) −0.0051 (7)

Geometric parameters (Å, °)

O1—C1 1.3594 (17) C10—C13 1.511 (2)
O1—H1 0.91 (2) C11—C12 1.387 (2)
N1—N2 1.2636 (16) C13—C14 1.523 (2)
N1—C4 1.4252 (17) C2—H2 0.954 (15)
N2—C7 1.4255 (17) C3—H3 0.987 (15)
C1—C6 1.4030 (19) C5—H5 0.968 (15)
C1—C2 1.3971 (19) C6—H6 1.002 (15)
C2—C3 1.3884 (19) C8—H8 0.971 (16)
C3—C4 1.3946 (19) C9—H9 0.943 (16)
C4—C5 1.4029 (19) C11—H11 0.990 (15)
C5—C6 1.3783 (19) C12—H12 0.968 (16)
C7—C8 1.398 (2) C13—H13 1.011 (18)
C7—C12 1.394 (2) C13—H13' 0.998 (16)
C8—C9 1.384 (2) C14—H14 1.00 (2)
C9—C10 1.402 (2) C14—H14' 0.96 (2)
C10—C11 1.393 (2) C14—H14" 0.997 (17)
O1···N1i 2.8316 (15) C8···H2iii 2.868 (15)
O1···C3i 3.3541 (17) C9···H14' 3.069 (17)
O1···H3i 2.585 (15) C10···H5v 2.926 (15)
O1···H6ii 2.632 (15) C13···H5v 2.942 (14)
N1···O1iii 2.8316 (15) C14···H8x 2.932 (16)
N1···H8 2.584 (16) H1···N1i 1.98 (2)
N1···H1iii 1.98 (2) H1···N2i 2.88 (2)
N2···H5 2.449 (14) H1···C3i 3.034 (19)
N2···H1iii 2.88 (2) H1···C4i 2.92 (2)
C2···C8i 3.536 (2) H1···C7i 3.04 (2)
C3···O1iii 3.3541 (17) H1···C8i 2.93 (2)
C4···C12iv 3.494 (2) H2···C7i 2.926 (15)
C5···C13v 3.488 (2) H2···C8i 2.868 (15)
C7···C7v 3.5810 (19) H3···O1iii 2.585 (15)
C8···C2iii 3.536 (2) H3···C5vi 3.076 (15)
C12···C4iv 3.494 (2) H3···C6vi 3.010 (15)
C13···C5v 3.488 (2) H5···N2 2.449 (14)
C2···H5vi 3.074 (15) H5···C10v 2.926 (15)
C2···H11iv 2.983 (15) H5···C13v 2.942 (14)
C3···H13'vii 3.040 (16) H5···C2viii 3.074 (15)
C3···H11iv 3.060 (15) H5···C3viii 2.991 (15)
C3···H5vi 2.991 (15) H6···O1ii 2.632 (15)
C3···H1iii 3.034 (19) H8···N1 2.584 (16)
C4···H1iii 2.92 (2) H8···C14vii 2.932 (16)
C4···H9vii 3.049 (15) H9···C4x 3.049 (15)
C5···H3viii 3.076 (15) H11···C2iv 2.983 (15)
C6···H14iv 2.79 (2) H11···C3iv 3.060 (15)
C6···H3viii 3.010 (15) H13'···C3x 3.040 (16)
C6···H14"ix 3.040 (17) H14···C6iv 2.79 (2)
C7···H2iii 2.926 (15) H14'···C9 3.069 (17)
C7···H1iii 3.04 (2) H14"···C6xi 3.040 (17)
C8···H1iii 2.93 (2)
C1—O1—H1 112.6 (12) C2—C3—H3 120.3 (9)
N2—N1—C4 114.68 (10) C4—C3—H3 118.9 (9)
N1—N2—C7 113.41 (11) C4—C5—H5 118.9 (8)
O1—C1—C6 116.44 (12) C6—C5—H5 121.2 (8)
C2—C1—C6 119.79 (12) C1—C6—H6 118.3 (9)
O1—C1—C2 123.77 (12) C5—C6—H6 121.3 (9)
C1—C2—C3 119.53 (13) C7—C8—H8 119.5 (10)
C2—C3—C4 120.72 (13) C9—C8—H8 120.7 (9)
N1—C4—C3 117.06 (11) C8—C9—H9 119.6 (9)
C3—C4—C5 119.51 (12) C10—C9—H9 119.4 (9)
N1—C4—C5 123.43 (12) C10—C11—H11 119.2 (9)
C4—C5—C6 119.98 (13) C12—C11—H11 119.4 (9)
C1—C6—C5 120.41 (13) C7—C12—H12 118.6 (9)
N2—C7—C8 123.21 (12) C11—C12—H12 121.9 (9)
C8—C7—C12 119.88 (13) C10—C13—H13 109.6 (10)
N2—C7—C12 116.87 (12) C10—C13—H13' 110.4 (9)
C7—C8—C9 119.70 (13) C14—C13—H13 108.5 (9)
C8—C9—C10 121.07 (13) C14—C13—H13' 108.2 (10)
C9—C10—C13 120.62 (13) H13—C13—H13' 108.3 (13)
C11—C10—C13 121.04 (13) C13—C14—H14 111.0 (11)
C9—C10—C11 118.30 (13) C13—C14—H14' 111.8 (10)
C10—C11—C12 121.32 (13) C13—C14—H14" 112.1 (9)
C7—C12—C11 119.57 (13) H14—C14—H14' 106.5 (14)
C10—C13—C14 111.73 (12) H14—C14—H14" 108.1 (14)
C1—C2—H2 119.8 (9) H14'—C14—H14" 107.1 (14)
C3—C2—H2 120.7 (9)
C4—N1—N2—C7 176.04 (11) C4—C5—C6—C1 −0.3 (2)
N2—N1—C4—C3 172.74 (12) N2—C7—C8—C9 179.83 (13)
N2—N1—C4—C5 −8.05 (18) C12—C7—C8—C9 −2.5 (2)
N1—N2—C7—C8 −33.70 (18) N2—C7—C12—C11 −177.78 (13)
N1—N2—C7—C12 148.57 (12) C8—C7—C12—C11 4.4 (2)
O1—C1—C2—C3 177.87 (13) C7—C8—C9—C10 −1.2 (2)
C6—C1—C2—C3 −2.4 (2) C8—C9—C10—C11 2.9 (2)
O1—C1—C6—C5 −178.04 (12) C8—C9—C10—C13 −174.80 (13)
C2—C1—C6—C5 2.2 (2) C9—C10—C11—C12 −1.0 (2)
C1—C2—C3—C4 0.7 (2) C13—C10—C11—C12 176.74 (13)
C2—C3—C4—N1 −179.53 (12) C9—C10—C13—C14 80.03 (17)
C2—C3—C4—C5 1.2 (2) C11—C10—C13—C14 −97.60 (17)
N1—C4—C5—C6 179.38 (12) C10—C11—C12—C7 −2.7 (2)
C3—C4—C5—C6 −1.4 (2)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+2, −y+1, −z+1; (iii) −x+2, y−1/2, −z+1/2; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z+1; (vi) x, −y+1/2, z−1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) x, −y+1/2, z+1/2; (ix) x, y+1, z; (x) −x+1, y−1/2, −z+1/2; (xi) x, y−1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1i 0.91 (2) 1.98 (2) 2.8316 (15) 154.7 (17)
C3—H3···O1iii 0.987 (15) 2.585 (15) 3.3541 (17) 134.7 (11)

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2174).

References

  1. Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. [DOI] [PubMed]
  2. Brown, A., Gillbro, T. & Nilsson, B. (1971). J. Polym. Sci. Part. A2, 9, 1509–1515.
  3. Bruker, (2007). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burger, A. & Ramberger, R. (1979). Mikrochim. Acta, 2, 259–271.
  5. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  6. Enkelmann, V., Kapp, H. & Meyer, W. (1978). Acta Cryst. B34, 2350–2351.
  7. Kageyama, H., Hayashi, Y., Harada, S., Kai, Y. & Kasai, Y. (1985). Makromol. Chem.186, 203–214.
  8. Kageyama, H., Miki, K., Kasai, N., Mohri, H., Okamoto, Y. & Hatada, K. (1986). Bull. Chem. Soc. Jpn, 59, 2707–2710.
  9. Kageyama, H., Miki, K., Tanaka, N. & Kasai, N. (1982). Makromol. Chem.183, 2863–2870.
  10. Kashino, S., Ito, K. & Haisa, M. (1979). Bull. Chem. Soc. Jpn, 52, 365–369.
  11. Kocaokutgen, H., Gür, M., Soylu, M. S. & Lönnecke, P. (2003). Acta Cryst. E59, o1613–o1615. [DOI] [PubMed]
  12. McWilliam, S. A., Skakle, J. M. S., Low, J. N., Wardell, J. L., Garden, S. J., Pinto, A. C., Torres, J. C. & Glidewell, C. (2001). Acta Cryst. C57, 942–945. [DOI] [PubMed]
  13. Meetsma, A. (2007). PLUTO University of Groningen, The Netherlands.
  14. Okamoto, Y., Ishikura, M., Hatada, K. & Yuki, H. (1983). Polym. J.15, 851–853.
  15. Okamoto, Y. & Nakano, T. (1994). Chem. Rev.94, 349–372.
  16. Ruokolainen, J., Mäkinen, R., Torkkeli, M., Mäkelä, T., Serimaa, R., ten Brinke, G. & Ikkala, O. (1998). Science, 280, 557–560. [DOI] [PubMed]
  17. Ruokolainen, J., ten Brinke, G. & Ikkala, O. (1999). Adv. Mater., 11, 777–780.
  18. Ruokolainen, J., Torkkeli, M., Serimaa, R., Komanschek, B. E., Ikkala, O. & ten Brinke, G. (1996). Phys. Rev. E, 54, 6646–6649. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Shibaev, V., Bobrovsky, A. & Boiko, N. (2003). Prog. Polym. Sci.28, 729–836.
  21. Soylu, S., Kocaokutgen, H., Gür, M. & Lönnecke, P. (2004). Acta Cryst. C60, o498–o500. [DOI] [PubMed]
  22. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  23. Zhang, D.-C., Ge, L.-Q., Fei, Z.-H., Zhang, Y.-Q. & Yu, K.-B. (1998). Acta Cryst. C54, 1909–1911.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801338X/bg2174sup1.cif

e-64-o1048-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801338X/bg2174Isup2.hkl

e-64-o1048-Isup2.hkl (111.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES