Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):m795. doi: 10.1107/S1600536808013135

(Amino­acetato-κ2 O,N)bis­(quinolin-8-olato-κ2 O,N)cobalt(III) methanol solvate

Bu-Qin Jing a,*, Shuang-Ming Meng a, Jing Han a, Bin Wang a, Xue-Mei Li a
PMCID: PMC2961573  PMID: 21202483

Abstract

In the crystal structure of the title compound, [Co(C2H4NO2)(C9H6NO)2]·CH3OH, the CoIII atom is chelated by two quinolin-8-olate and one glycinate anions in a distorted octa­hedral coordination geometry. The five-membered chelating glycinate ring assumes an envelope conformation. The complex mol­ecules are assembled by inter­molecular N—H⋯O hydrogen bonding.

Related literature

For a related structure, see: Li et al. (2003).graphic file with name e-64-0m795-scheme1.jpg

Experimental

Crystal data

  • [Co(C2H4NO2)(C9H6NO)2]·CH4O

  • M r = 453.33

  • Triclinic, Inline graphic

  • a = 9.8377 (4) Å

  • b = 10.6526 (4) Å

  • c = 10.7369 (4) Å

  • α = 82.047 (1)°

  • β = 76.289 (1)°

  • γ = 64.941 (1)°

  • V = 989.32 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 273 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.840, T max = 0.899

  • 11346 measured reflections

  • 3486 independent reflections

  • 3261 reflections with I > 2σ(I)

  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.093

  • S = 1.00

  • 3486 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013135/xu2418sup1.cif

e-64-0m795-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013135/xu2418Isup2.hkl

e-64-0m795-Isup2.hkl (170.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Co1—O1 1.9045 (12)
Co1—O3 1.8926 (13)
Co1—O4 1.9002 (13)
Co1—N1 1.9373 (14)
Co1—N2 1.9179 (15)
Co1—N3 1.9309 (15)
O3—Co1—O4 90.60 (6)
O3—Co1—O1 89.93 (6)
O4—Co1—O1 176.81 (5)
O3—Co1—N2 176.47 (5)
O4—Co1—N2 85.88 (6)
O1—Co1—N2 93.56 (6)
O3—Co1—N3 87.07 (7)
O4—Co1—N3 91.14 (6)
O1—Co1—N3 85.75 (6)
N2—Co1—N3 92.71 (7)
O3—Co1—N1 85.82 (6)
O4—Co1—N1 92.39 (6)
O1—Co1—N1 90.79 (6)
N2—Co1—N1 94.60 (6)
N3—Co1—N1 172.09 (7)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 1.92 2.743 (3) 175
N3—H21⋯O5 0.85 (2) 2.17 (3) 2.950 (3) 153 (2)
N3—H22⋯O3ii 0.86 (3) 2.10 (3) 2.952 (2) 169 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Youth Science Foundation of Shanxi Datong University, China (No. 2007Q08).

supplementary crystallographic information

Comment

The 8–hydroxyquinoline (HQ) is a very good ligand, forms complex compounds with various metal ions in solution. The strong chelating action of HQ in solution has been extensively studied and widely used in analytical chemistry. In this work, we use glycin and 8–hydroxyquinoline as bidedtate ligand to synthesize the title complex, (I).

The molecular structure of the title compound is shown in Fig. 1. The CoIII atom is chelated by two 8-hydroxyquinoline and one glycin anions in a distorted octahedral coordination geometry. The Co—N bond distances are longer than Co—O bond distances (Table 1), which agrees with that found in a related structure, tris(8-quinolinolato)-cobalt(III) methanol solvate (Li et al. 2003). The two 8-hydroxyquinolate rings are almost perpendicular to each other with a dihedral angle of 81.0°. The five-membered chelating ring of the glycin assumes an envelope conformation, with N3 atom at the flap position. The complex molecules are assembled by intermolecular N–H···O hydrogen bonding (Table 2). Lattice methanol molecule is linked with complex via O—H···O and N—H···O hydrogen bonding (Fig. 2).

Refinement

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions and allowed to ride on their attached atoms, with C—H = 0.93–0.97 Å, O–H = 0.82 Å, Uiso(H) = 1.2 or 1.5Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

The atomic labeling scheme of (I) with displacement ellipsoids at the 30% probability level.

Fig. 2.

Fig. 2.

A packing diagram of the unit cell showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.

Fig. 3.

Fig. 3.

Interactive view of the complex.

Crystal data

[Co(C2H4NO2)(C9H6NO)2]·CH4O Z = 2
Mr = 453.33 F000 = 468
Triclinic, P1 Dx = 1.522 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.8377 (4) Å Cell parameters from 7882 reflections
b = 10.6526 (4) Å θ = 2.4–28.2º
c = 10.7369 (4) Å µ = 0.91 mm1
α = 82.047 (1)º T = 273 (2) K
β = 76.289 (1)º Block, purple
γ = 64.941 (1)º 0.20 × 0.15 × 0.12 mm
V = 989.32 (7) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 3261 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.017
Monochromator: graphite θmax = 25.1º
φ and ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −9→11
Tmin = 0.840, Tmax = 0.899 k = −12→12
11346 measured reflections l = −12→12
3486 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094   w = 1/[σ2(Fo2) + (0.073P)2 + 0.17P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
3486 reflections Δρmax = 0.28 e Å3
281 parameters Δρmin = −0.36 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.21615 (2) 0.26369 (2) 0.46144 (2) 0.03237 (12)
O1 0.36577 (14) 0.20861 (13) 0.56554 (12) 0.0381 (3)
O2 0.46440 (17) 0.29619 (16) 0.67761 (14) 0.0553 (4)
O3 0.05933 (15) 0.33761 (13) 0.60596 (13) 0.0418 (3)
O4 0.06935 (14) 0.32742 (13) 0.35430 (13) 0.0421 (3)
O5 0.4828 (3) 0.4912 (3) 0.2562 (2) 0.1083 (9)
H5 0.4933 0.5573 0.2770 0.162*
N1 0.18775 (16) 0.09298 (15) 0.50938 (14) 0.0348 (3)
N2 0.36569 (17) 0.19377 (15) 0.30857 (14) 0.0349 (3)
N3 0.23374 (19) 0.43960 (16) 0.43835 (17) 0.0397 (4)
C1 0.0225 (2) 0.23999 (19) 0.67578 (17) 0.0391 (4)
C2 −0.0769 (2) 0.2598 (2) 0.7924 (2) 0.0539 (5)
H2 −0.1231 0.3465 0.8279 0.065*
C3 −0.1088 (3) 0.1483 (3) 0.8583 (2) 0.0683 (7)
H3 −0.1735 0.1626 0.9386 0.082*
C4 −0.0487 (3) 0.0206 (3) 0.8091 (2) 0.0656 (6)
H4 −0.0744 −0.0498 0.8543 0.079*
C5 0.0530 (2) −0.0043 (2) 0.6888 (2) 0.0460 (5)
C6 0.1205 (2) −0.1297 (2) 0.6232 (2) 0.0528 (5)
H6 0.0999 −0.2057 0.6600 0.063*
C7 0.2144 (2) −0.1391 (2) 0.5076 (2) 0.0504 (5)
H7 0.2567 −0.2210 0.4642 0.060*
C8 0.2488 (2) −0.02614 (18) 0.45221 (19) 0.0413 (4)
H8 0.3162 −0.0354 0.3735 0.050*
C9 0.08930 (19) 0.10617 (18) 0.62504 (17) 0.0364 (4)
C10 0.1360 (2) 0.30635 (18) 0.23300 (19) 0.0422 (4)
C11 0.0622 (3) 0.3473 (2) 0.1301 (2) 0.0590 (6)
H11 −0.0435 0.3965 0.1439 0.071*
C12 0.1463 (4) 0.3150 (3) 0.0052 (2) 0.0690 (7)
H12 0.0939 0.3445 −0.0622 0.083*
C13 0.3015 (4) 0.2421 (3) −0.0224 (2) 0.0657 (7)
H13 0.3530 0.2230 −0.1068 0.079*
C14 0.3826 (3) 0.1964 (2) 0.07908 (19) 0.0500 (5)
C15 0.5417 (3) 0.1158 (2) 0.0668 (2) 0.0576 (5)
H15 0.6026 0.0903 −0.0139 0.069*
C16 0.6059 (2) 0.0755 (2) 0.1726 (2) 0.0558 (5)
H16 0.7101 0.0205 0.1645 0.067*
C17 0.5149 (2) 0.1171 (2) 0.29365 (19) 0.0438 (4)
H17 0.5602 0.0904 0.3653 0.053*
C18 0.2987 (2) 0.23139 (18) 0.20409 (18) 0.0393 (4)
C19 0.3819 (2) 0.31043 (19) 0.60261 (16) 0.0392 (4)
C20 0.2899 (2) 0.45316 (19) 0.5487 (2) 0.0452 (4)
H20A 0.2040 0.5039 0.6144 0.054*
H20B 0.3538 0.5047 0.5221 0.054*
C21 0.5849 (6) 0.4394 (5) 0.1517 (4) 0.1377 (19)
H21A 0.5343 0.4321 0.0885 0.207*
H21B 0.6579 0.3490 0.1722 0.207*
H21C 0.6367 0.4993 0.1183 0.207*
H22 0.143 (3) 0.502 (3) 0.436 (2) 0.060 (7)*
H21 0.295 (3) 0.444 (2) 0.369 (2) 0.048 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.02705 (16) 0.02604 (16) 0.04380 (17) −0.01193 (11) −0.00651 (10) 0.00211 (10)
O1 0.0359 (7) 0.0324 (7) 0.0464 (7) −0.0132 (5) −0.0107 (5) −0.0006 (5)
O2 0.0585 (9) 0.0602 (9) 0.0529 (8) −0.0229 (7) −0.0185 (7) −0.0116 (7)
O3 0.0365 (7) 0.0317 (6) 0.0529 (7) −0.0144 (5) 0.0006 (5) −0.0027 (5)
O4 0.0315 (6) 0.0366 (7) 0.0594 (8) −0.0142 (5) −0.0147 (6) 0.0056 (6)
O5 0.1061 (17) 0.1167 (19) 0.1255 (19) −0.0846 (16) 0.0328 (15) −0.0453 (15)
N1 0.0294 (7) 0.0310 (7) 0.0468 (8) −0.0139 (6) −0.0126 (6) 0.0036 (6)
N2 0.0330 (8) 0.0318 (7) 0.0431 (8) −0.0165 (6) −0.0089 (6) 0.0020 (6)
N3 0.0316 (8) 0.0305 (8) 0.0567 (10) −0.0144 (7) −0.0078 (7) 0.0035 (7)
C1 0.0321 (9) 0.0415 (10) 0.0468 (10) −0.0187 (7) −0.0087 (7) 0.0023 (8)
C2 0.0489 (12) 0.0610 (13) 0.0523 (11) −0.0273 (10) 0.0013 (9) −0.0072 (10)
C3 0.0685 (15) 0.0868 (18) 0.0532 (12) −0.0460 (14) 0.0061 (11) 0.0020 (12)
C4 0.0710 (15) 0.0741 (16) 0.0641 (14) −0.0506 (13) −0.0070 (12) 0.0173 (12)
C5 0.0414 (10) 0.0463 (11) 0.0589 (11) −0.0272 (9) −0.0163 (9) 0.0131 (9)
C6 0.0506 (11) 0.0379 (10) 0.0813 (15) −0.0285 (9) −0.0242 (11) 0.0152 (9)
C7 0.0458 (11) 0.0330 (9) 0.0788 (14) −0.0189 (8) −0.0193 (10) −0.0011 (9)
C8 0.0377 (9) 0.0336 (9) 0.0547 (11) −0.0146 (7) −0.0135 (8) −0.0003 (8)
C9 0.0310 (9) 0.0374 (9) 0.0461 (9) −0.0185 (7) −0.0135 (7) 0.0070 (7)
C10 0.0461 (10) 0.0310 (9) 0.0590 (12) −0.0226 (8) −0.0218 (9) 0.0108 (8)
C11 0.0656 (14) 0.0484 (12) 0.0783 (15) −0.0302 (11) −0.0415 (12) 0.0196 (11)
C12 0.101 (2) 0.0613 (15) 0.0661 (15) −0.0430 (15) −0.0491 (15) 0.0208 (12)
C13 0.104 (2) 0.0626 (14) 0.0471 (12) −0.0481 (15) −0.0239 (12) 0.0099 (10)
C14 0.0691 (14) 0.0482 (12) 0.0451 (10) −0.0369 (11) −0.0115 (10) 0.0026 (9)
C15 0.0618 (14) 0.0653 (14) 0.0516 (12) −0.0374 (11) 0.0071 (10) −0.0148 (10)
C16 0.0408 (11) 0.0627 (13) 0.0630 (13) −0.0224 (10) 0.0013 (9) −0.0159 (10)
C17 0.0340 (9) 0.0455 (10) 0.0523 (10) −0.0160 (8) −0.0078 (8) −0.0051 (8)
C18 0.0472 (10) 0.0330 (9) 0.0463 (10) −0.0241 (8) −0.0143 (8) 0.0062 (7)
C19 0.0337 (9) 0.0423 (10) 0.0383 (9) −0.0145 (8) 0.0010 (7) −0.0084 (7)
C20 0.0412 (10) 0.0362 (9) 0.0614 (12) −0.0182 (8) −0.0087 (9) −0.0070 (8)
C21 0.197 (5) 0.142 (4) 0.116 (3) −0.129 (4) 0.030 (3) −0.047 (3)

Geometric parameters (Å, °)

Co1—O1 1.9045 (12) C5—C6 1.417 (3)
Co1—O3 1.8926 (13) C6—C7 1.348 (3)
Co1—O4 1.9002 (13) C6—H6 0.9300
Co1—N1 1.9373 (14) C7—C8 1.403 (3)
Co1—N2 1.9179 (15) C7—H7 0.9300
Co1—N3 1.9309 (15) C8—H8 0.9300
O1—C19 1.287 (2) C10—C11 1.384 (3)
O2—C19 1.225 (2) C10—C18 1.431 (3)
O3—C1 1.323 (2) C11—C12 1.400 (4)
O4—C10 1.314 (2) C11—H11 0.9300
O5—C21 1.319 (4) C12—C13 1.367 (4)
O5—H5 0.8200 C12—H12 0.9300
N1—C8 1.320 (2) C13—C14 1.413 (3)
N1—C9 1.365 (2) C13—H13 0.9300
N2—C17 1.326 (2) C14—C18 1.405 (3)
N2—C18 1.362 (2) C14—C15 1.413 (3)
N3—C20 1.468 (3) C15—C16 1.361 (3)
N3—H22 0.86 (3) C15—H15 0.9300
N3—H21 0.85 (2) C16—C17 1.399 (3)
C1—C2 1.374 (3) C16—H16 0.9300
C1—C9 1.419 (3) C17—H17 0.9300
C2—C3 1.410 (3) C19—C20 1.518 (3)
C2—H2 0.9300 C20—H20A 0.9700
C3—C4 1.359 (4) C20—H20B 0.9700
C3—H3 0.9300 C21—H21A 0.9600
C4—C5 1.414 (3) C21—H21B 0.9600
C4—H4 0.9300 C21—H21C 0.9600
C5—C9 1.414 (2)
O3—Co1—O4 90.60 (6) C6—C7—H7 119.8
O3—Co1—O1 89.93 (6) C8—C7—H7 119.8
O4—Co1—O1 176.81 (5) N1—C8—C7 121.45 (18)
O3—Co1—N2 176.47 (5) N1—C8—H8 119.3
O4—Co1—N2 85.88 (6) C7—C8—H8 119.3
O1—Co1—N2 93.56 (6) N1—C9—C5 122.64 (17)
O3—Co1—N3 87.07 (7) N1—C9—C1 115.27 (15)
O4—Co1—N3 91.14 (6) C5—C9—C1 122.07 (17)
O1—Co1—N3 85.75 (6) O4—C10—C11 125.8 (2)
N2—Co1—N3 92.71 (7) O4—C10—C18 117.56 (16)
O3—Co1—N1 85.82 (6) C11—C10—C18 116.6 (2)
O4—Co1—N1 92.39 (6) C10—C11—C12 120.2 (2)
O1—Co1—N1 90.79 (6) C10—C11—H11 119.9
N2—Co1—N1 94.60 (6) C12—C11—H11 119.9
N3—Co1—N1 172.09 (7) C13—C12—C11 123.2 (2)
C19—O1—Co1 113.96 (11) C13—C12—H12 118.4
C1—O3—Co1 111.40 (11) C11—C12—H12 118.4
C10—O4—Co1 111.26 (11) C12—C13—C14 119.0 (2)
C21—O5—H5 109.5 C12—C13—H13 120.5
C8—N1—C9 119.18 (15) C14—C13—H13 120.5
C8—N1—Co1 131.33 (13) C18—C14—C13 117.7 (2)
C9—N1—Co1 109.46 (12) C18—C14—C15 116.45 (19)
C17—N2—C18 119.37 (17) C13—C14—C15 125.8 (2)
C17—N2—Co1 129.99 (13) C16—C15—C14 120.2 (2)
C18—N2—Co1 110.63 (12) C16—C15—H15 119.9
C20—N3—Co1 107.24 (11) C14—C15—H15 119.9
C20—N3—H22 111.7 (16) C15—C16—C17 119.9 (2)
Co1—N3—H22 106.0 (17) C15—C16—H16 120.1
C20—N3—H21 110.4 (15) C17—C16—H16 120.1
Co1—N3—H21 111.4 (15) N2—C17—C16 121.50 (18)
H22—N3—H21 110 (2) N2—C17—H17 119.3
O3—C1—C2 124.64 (18) C16—C17—H17 119.3
O3—C1—C9 117.25 (15) N2—C18—C14 122.54 (18)
C2—C1—C9 118.10 (17) N2—C18—C10 114.32 (17)
C1—C2—C3 119.9 (2) C14—C18—C10 123.13 (18)
C1—C2—H2 120.1 O2—C19—O1 123.35 (17)
C3—C2—H2 120.1 O2—C19—C20 120.82 (17)
C4—C3—C2 122.5 (2) O1—C19—C20 115.83 (15)
C4—C3—H3 118.7 N3—C20—C19 109.90 (15)
C2—C3—H3 118.7 N3—C20—H20A 109.7
C3—C4—C5 119.62 (19) C19—C20—H20A 109.7
C3—C4—H4 120.2 N3—C20—H20B 109.7
C5—C4—H4 120.2 C19—C20—H20B 109.7
C4—C5—C9 117.7 (2) H20A—C20—H20B 108.2
C4—C5—C6 126.22 (19) O5—C21—H21A 109.5
C9—C5—C6 116.04 (18) O5—C21—H21B 109.5
C7—C6—C5 120.19 (17) H21A—C21—H21B 109.5
C7—C6—H6 119.9 O5—C21—H21C 109.5
C5—C6—H6 119.9 H21A—C21—H21C 109.5
C6—C7—C8 120.45 (19) H21B—C21—H21C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5···O2i 0.82 1.92 2.743 (3) 175
N3—H21···O5 0.85 (2) 2.17 (3) 2.950 (3) 153 (2)
N3—H22···O3ii 0.86 (3) 2.10 (3) 2.952 (2) 169 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2418).

References

  1. Li, D.-X., Xu, D.-J., Gu, J.-M. & Xu, Y.-Z. (2003). Acta Cryst. E59, m543–m545.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013135/xu2418sup1.cif

e-64-0m795-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013135/xu2418Isup2.hkl

e-64-0m795-Isup2.hkl (170.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES