Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o988–o989. doi: 10.1107/S1600536808012671

(E)-4-(Benz­yloxy)benzaldehyde thio­semicarbazone

M T H Tarafder a,*, M A A A A Islam b, K A Crouse c, Suchada Chantrapromma d,, Hoong-Kun Fun e,§
PMCID: PMC2961576  PMID: 21202714

Abstract

In the title compound, C15H15N3OS, the thio­semicarbazone group adopts an E configuration with respect to the C=N bond. The benzaldehyde thio­semicarbazone fragment is almost planar [maximum deviation = 0.012 (1) Å], while the dihedral angle between the benz­yloxy and phenyl rings is 72.48 (5)°. In the crystal structure, mol­ecules are inter­connected by N—H⋯N and N—H⋯S hydrogen bonds, forming a two-dimensional network parallel to the bc plane and are further stacked along the a axis by π–π inter­actions [centroid–centroid separation 3.9043 (7) Å]. The crystal structure is also stabilized by C—H⋯π inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures of thio­semicarbazones, see, for example: John et al. (2003); Joseph et al. (2004). For applications and bioactivities of thio­semicarbazones, see, for example: Al-Awadi et al. (2008); Amoedo et al. (2006); Chandra et al., (2001); Demertzi et al. (2007); Kizilcikli et al. (2004); Mirsha et al. (2006); Offiong & Martelli (1997); Sing et al. (2001).graphic file with name e-64-0o988-scheme1.jpg

Experimental

Crystal data

  • C15H15N3OS

  • M r = 285.37

  • Monoclinic, Inline graphic

  • a = 11.0269 (1) Å

  • b = 12.6668 (2) Å

  • c = 10.8774 (1) Å

  • β = 116.099 (1)°

  • V = 1364.39 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.42 × 0.31 × 0.23 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.792, T max = 0.947

  • 20710 measured reflections

  • 3983 independent reflections

  • 3517 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.096

  • S = 1.03

  • 3983 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 ; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012671/sj2492sup1.cif

e-64-0o988-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012671/sj2492Isup2.hkl

e-64-0o988-Isup2.hkl (195.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.880 (16) 2.467 (16) 3.3403 (10) 171.9 (14)
N3—H1N3⋯N1 0.895 (19) 2.229 (18) 2.6104 (16) 105.2 (13)
N3—H1N3⋯S1ii 0.895 (19) 2.815 (17) 3.5285 (11) 137.7 (14)
C10—H10ACg1iii 0.93 2.97 3.8325 (13) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the the C1–C6 ring.

Acknowledgments

KAC thanks Universiti Putra Malaysia for financial help. MTHT thanks the University of Rajshahi for the provision of laboratory facilities. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

The chemistry of thiosemicarbazones have been of immense interest because these compounds provide intriguing chelating patterns, profound biomedical properties, structural diversity and ion-sensing abilities (Al-Awadi et al., 2008; Amoedo et al., 2006; Demertzi et al., 2007; Mirsha et al., 2006; Kizilcikli et al., 2004). Compounds of this type have been used as antibacterial, antifungal and antitumor agents (Sing et al., 2001; Offiong et al., 1997). Due to their long chain structure, they are very flexible and form linkages with a variety of metal ions (Chandra et al., 2001). It was advocated that their flexibility and bioactivity arise because of the presence of the imino group (–N=CH–) in addition to thioamino moities present in the skeleton of the molecule. The title thiosemicarbazone derivative (I) was synthesized and its crystal structure is reported here. (I) is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the thiosemicarbazone adopts an E conformation with a trans configuration observed about the C═N bond. The benzaldehydethiosemicarbazone fragment is almost planar, maximum deviation 0.012 (1) Å, with the dihedral angle between the hydrazinecarbothioamide unit (S1/N1/N2/N3/C15) and the C8–C13 phenyl ring being 6.59 (5)°. The orientation of the 4-benzyloxy group is indicated by the dihedral angle between the 4-benzyloxy and the C8–C13 phenyl rings being 72.48 (5)Å and the torsion angle C8–O1–C7–C6 of 165.49 (9)°. The C15═S1 and C15—N2 bond distances are typical of a C/db S double bond and a C—N single bond, respectively. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and show similar trends to those of previously reported thiosemicarbazones (John et al., 2003; Joseph et al., 2004). An intramolecular N3-H1N3···N1 hydrogen bond forms a five-membered N3-H1N3-N1—N2—C15 ring, producing an S(5) ring motif (Bernstein et al., 1995).

In the crystal packing (Fig. 2), molecules are interconnected by N—H···N and N—H···S hydrogen bonds (Table 1) into a two-dimensional network parallel to the bc plane and are further stacked along the a-axis by π···π interactions with the distances of Cg1···Cg2 = 3.9043 (7) Å: symmetry code x, 1/2 - y, -1/2 + z; Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 phenyl rings, respectively. The crystal also stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1).

Experimental

The title compound was synthesized by adding a solution of 4-benzyloxybenzaldehyde (2.12 g, 10 mmol) in ethanol (30 ml) to a hot solution of thiosemicarbazide (0.91 g, 10 mmol) in ethanol (100 ml). The mixture was refluxed for 2 hrs and subsequently cooled to room temperature. The light yellow precipitate of the title compound was separated by filtration, washed with ethanol and dried in vacuo over anhydrous CaCl2. (Yield: 1.75 g, 61%), and was then dissolved in chloroform (0.11 g in 50 ml) and allowed to stand at room temperature (288–293 K) for 20 days. Yellow single crystals of the title compound were obtained after recrystallization from a solution of chloroform/toluene (30:7 v/v) after 12 days at room temperature, M.p 446 K.

Refinement

H atoms bound to N atoms were located from a difference Fourier map and refined freely with isotropic displacement parameters. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.69 Å from C8 and the deepest hole is located at 1.19 Å from C12.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The N—H···N intramolecular hydrogen bond is shown as dashed line.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis, showing two-dimensional network parallel to the bc plane. Hydrogen bonds are shown as dashed lines.

Crystal data

C15H15N3OS F000 = 600
Mr = 285.37 Dx = 1.389 Mg m3
Monoclinic, P21/c Melting point: 446 K
Hall symbol: -P 2ybc Mo Kα radiation λ = 0.71073 Å
a = 11.0269 (1) Å Cell parameters from 3983 reflections
b = 12.6668 (2) Å θ = 2.1–30.0º
c = 10.8774 (1) Å µ = 0.24 mm1
β = 116.099 (1)º T = 100.0 (1) K
V = 1364.39 (3) Å3 Block, colorless
Z = 4 0.42 × 0.31 × 0.23 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 3983 independent reflections
Radiation source: fine-focus sealed tube 3517 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.027
Detector resolution: 8.33 pixels mm-1 θmax = 30.0º
T = 100.0(1) K θmin = 2.1º
ω scans h = −15→14
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −17→17
Tmin = 0.792, Tmax = 0.947 l = −15→14
20710 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096   w = 1/[σ2(Fo2) + (0.0529P)2 + 0.4873P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3983 reflections Δρmax = 0.48 e Å3
193 parameters Δρmin = −0.18 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 −0.13297 (3) 0.13427 (2) 0.97645 (3) 0.01819 (8)
O1 0.32553 (8) 0.07638 (6) 0.33345 (8) 0.01820 (17)
N1 0.04289 (10) 0.10009 (8) 0.73443 (9) 0.01734 (18)
N2 0.00675 (10) 0.08433 (8) 0.83961 (9) 0.01797 (19)
N3 −0.13647 (10) 0.22436 (8) 0.75438 (10) 0.01930 (19)
C1 0.44624 (11) 0.26954 (9) 0.20175 (11) 0.0185 (2)
H1A 0.4399 0.3177 0.2632 0.022*
C2 0.53207 (12) 0.29079 (9) 0.14214 (11) 0.0190 (2)
H2A 0.5835 0.3522 0.1645 0.023*
C3 0.54055 (12) 0.21970 (9) 0.04895 (11) 0.0196 (2)
H3A 0.5973 0.2334 0.0081 0.024*
C4 0.46359 (13) 0.12808 (9) 0.01727 (12) 0.0214 (2)
H4A 0.4685 0.0808 −0.0458 0.026*
C5 0.37939 (12) 0.10629 (9) 0.07858 (11) 0.0206 (2)
H5A 0.3295 0.0441 0.0577 0.025*
C6 0.36955 (11) 0.17766 (9) 0.17140 (11) 0.0174 (2)
C7 0.27374 (12) 0.16007 (10) 0.23367 (11) 0.0203 (2)
H7A 0.2647 0.2244 0.2774 0.024*
H7B 0.1853 0.1410 0.1630 0.024*
C8 0.26799 (11) 0.06651 (8) 0.42162 (10) 0.0158 (2)
C9 0.32639 (11) −0.00843 (9) 0.52540 (11) 0.0178 (2)
H9A 0.3968 −0.0507 0.5288 0.021*
C10 0.27868 (12) −0.01940 (9) 0.62342 (11) 0.0177 (2)
H10A 0.3173 −0.0696 0.6922 0.021*
C11 0.17333 (11) 0.04386 (8) 0.62022 (10) 0.0160 (2)
C12 0.11361 (11) 0.11615 (9) 0.51313 (11) 0.0168 (2)
H12A 0.0419 0.1574 0.5084 0.020*
C13 0.15942 (11) 0.12737 (9) 0.41392 (11) 0.0170 (2)
H13A 0.1181 0.1752 0.3426 0.020*
C14 0.12869 (11) 0.03475 (9) 0.72786 (11) 0.0175 (2)
H14A 0.1629 −0.0190 0.7923 0.021*
C15 −0.08583 (11) 0.14858 (8) 0.84847 (11) 0.0156 (2)
H1N2 0.0392 (16) 0.0301 (13) 0.8951 (16) 0.025 (4)*
H1N3 −0.1132 (17) 0.2256 (13) 0.6853 (18) 0.031 (4)*
H2N3 −0.1995 (18) 0.2624 (14) 0.7562 (17) 0.030 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02249 (15) 0.01892 (14) 0.01894 (14) 0.00132 (10) 0.01441 (11) 0.00114 (9)
O1 0.0202 (4) 0.0215 (4) 0.0181 (3) 0.0037 (3) 0.0132 (3) 0.0039 (3)
N1 0.0192 (5) 0.0209 (4) 0.0157 (4) −0.0012 (3) 0.0111 (4) 0.0006 (3)
N2 0.0217 (5) 0.0200 (4) 0.0176 (4) 0.0032 (4) 0.0136 (4) 0.0035 (3)
N3 0.0189 (5) 0.0224 (5) 0.0197 (4) 0.0039 (4) 0.0114 (4) 0.0045 (4)
C1 0.0198 (5) 0.0211 (5) 0.0152 (4) 0.0028 (4) 0.0082 (4) 0.0004 (4)
C2 0.0184 (5) 0.0208 (5) 0.0170 (5) −0.0012 (4) 0.0070 (4) 0.0012 (4)
C3 0.0204 (5) 0.0239 (5) 0.0176 (5) 0.0023 (4) 0.0112 (4) 0.0042 (4)
C4 0.0292 (6) 0.0210 (5) 0.0186 (5) 0.0021 (4) 0.0147 (5) 0.0004 (4)
C5 0.0253 (6) 0.0196 (5) 0.0191 (5) −0.0028 (4) 0.0118 (4) 0.0004 (4)
C6 0.0167 (5) 0.0224 (5) 0.0144 (4) 0.0029 (4) 0.0079 (4) 0.0038 (4)
C7 0.0182 (5) 0.0272 (6) 0.0185 (5) 0.0041 (4) 0.0107 (4) 0.0064 (4)
C8 0.0163 (5) 0.0182 (5) 0.0155 (4) −0.0017 (4) 0.0095 (4) −0.0013 (4)
C9 0.0194 (5) 0.0174 (5) 0.0202 (5) 0.0021 (4) 0.0121 (4) 0.0007 (4)
C10 0.0205 (5) 0.0170 (5) 0.0185 (5) 0.0014 (4) 0.0111 (4) 0.0021 (4)
C11 0.0177 (5) 0.0170 (5) 0.0158 (4) −0.0014 (4) 0.0097 (4) −0.0011 (4)
C12 0.0151 (5) 0.0206 (5) 0.0163 (5) 0.0010 (4) 0.0083 (4) 0.0001 (4)
C13 0.0157 (5) 0.0210 (5) 0.0152 (4) 0.0017 (4) 0.0077 (4) 0.0021 (4)
C14 0.0200 (5) 0.0181 (5) 0.0171 (4) −0.0004 (4) 0.0106 (4) 0.0011 (4)
C15 0.0146 (5) 0.0173 (5) 0.0160 (4) −0.0024 (4) 0.0078 (4) −0.0010 (4)

Geometric parameters (Å, °)

S1—C15 1.6964 (11) C4—H4A 0.9300
O1—C8 1.3688 (12) C5—C6 1.3946 (15)
O1—C7 1.4430 (13) C5—H5A 0.9300
N1—C14 1.2826 (14) C6—C7 1.5014 (15)
N1—N2 1.3815 (12) C7—H7A 0.9700
N2—C15 1.3417 (14) C7—H7B 0.9700
N2—H1N2 0.880 (17) C8—C13 1.3950 (15)
N3—C15 1.3335 (14) C8—C9 1.3966 (15)
N3—H1N3 0.894 (17) C9—C10 1.3879 (14)
N3—H2N3 0.853 (18) C9—H9A 0.9300
C1—C2 1.3886 (15) C10—C11 1.3990 (15)
C1—C6 1.3903 (16) C10—H10A 0.9300
C1—H1A 0.9300 C11—C12 1.3979 (15)
C2—C3 1.3894 (15) C11—C14 1.4606 (14)
C2—H2A 0.9300 C12—C13 1.3856 (14)
C3—C4 1.3887 (16) C12—H12A 0.9300
C3—H3A 0.9300 C13—H13A 0.9300
C4—C5 1.3884 (16) C14—H14A 0.9300
C8—O1—C7 116.23 (8) C6—C7—H7A 109.9
C14—N1—N2 116.20 (9) O1—C7—H7B 109.9
C15—N2—N1 118.53 (9) C6—C7—H7B 109.9
C15—N2—H1N2 121.1 (10) H7A—C7—H7B 108.3
N1—N2—H1N2 120.2 (10) O1—C8—C13 123.89 (9)
C15—N3—H1N3 118.6 (11) O1—C8—C9 115.94 (9)
C15—N3—H2N3 117.4 (11) C13—C8—C9 120.16 (9)
H1N3—N3—H2N3 123.1 (15) C10—C9—C8 119.55 (10)
C2—C1—C6 121.31 (10) C10—C9—H9A 120.2
C2—C1—H1A 119.3 C8—C9—H9A 120.2
C6—C1—H1A 119.3 C9—C10—C11 120.98 (10)
C1—C2—C3 119.57 (11) C9—C10—H10A 119.5
C1—C2—H2A 120.2 C11—C10—H10A 119.5
C3—C2—H2A 120.2 C12—C11—C10 118.52 (9)
C4—C3—C2 119.52 (10) C12—C11—C14 121.22 (10)
C4—C3—H3A 120.2 C10—C11—C14 120.25 (10)
C2—C3—H3A 120.2 C13—C12—C11 121.11 (10)
C5—C4—C3 120.78 (10) C13—C12—H12A 119.4
C5—C4—H4A 119.6 C11—C12—H12A 119.4
C3—C4—H4A 119.6 C12—C13—C8 119.60 (10)
C4—C5—C6 120.02 (11) C12—C13—H13A 120.2
C4—C5—H5A 120.0 C8—C13—H13A 120.2
C6—C5—H5A 120.0 N1—C14—C11 120.71 (10)
C1—C6—C5 118.79 (10) N1—C14—H14A 119.6
C1—C6—C7 119.49 (10) C11—C14—H14A 119.6
C5—C6—C7 121.65 (10) N3—C15—N2 117.16 (9)
O1—C7—C6 108.91 (9) N3—C15—S1 122.05 (8)
O1—C7—H7A 109.9 N2—C15—S1 120.78 (8)
C14—N1—N2—C15 −177.98 (10) C13—C8—C9—C10 −2.17 (16)
C6—C1—C2—C3 0.83 (17) C8—C9—C10—C11 −0.31 (17)
C1—C2—C3—C4 −0.35 (17) C9—C10—C11—C12 2.21 (16)
C2—C3—C4—C5 −0.62 (18) C9—C10—C11—C14 −177.07 (10)
C3—C4—C5—C6 1.13 (18) C10—C11—C12—C13 −1.66 (16)
C2—C1—C6—C5 −0.32 (16) C14—C11—C12—C13 177.61 (10)
C2—C1—C6—C7 −177.44 (10) C11—C12—C13—C8 −0.77 (17)
C4—C5—C6—C1 −0.65 (17) O1—C8—C13—C12 −175.94 (10)
C4—C5—C6—C7 176.40 (11) C9—C8—C13—C12 2.71 (16)
C8—O1—C7—C6 165.49 (9) N2—N1—C14—C11 179.67 (9)
C1—C6—C7—O1 −109.78 (11) C12—C11—C14—N1 −7.05 (17)
C5—C6—C7—O1 73.19 (13) C10—C11—C14—N1 172.21 (10)
C7—O1—C8—C13 4.11 (15) N1—N2—C15—N3 −0.34 (15)
C7—O1—C8—C9 −174.59 (10) N1—N2—C15—S1 −179.21 (8)
O1—C8—C9—C10 176.58 (10)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···S1i 0.880 (16) 2.467 (16) 3.3403 (10) 171.9 (14)
N3—H1N3···N1 0.895 (19) 2.229 (18) 2.6104 (16) 105.2 (13)
N3—H1N3···S1ii 0.895 (19) 2.815 (17) 3.5285 (11) 137.7 (14)
C10—H10A···Cg1iii 0.93 2.97 3.8325 (13) 154

Symmetry codes: (i) −x, −y, −z+2; (ii) x, −y+1/2, z−1/2; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2492).

References

  1. Al-Awadi, N. A., Shuaib, N. A., Abbas, A., EI-Sherif, A. A., EI-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl doi:10.1155/2008/479897. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Amoedo, A., Adrio, L. A., Antelo, J. M., Martinez, J., Pereira, M. T., Fernandez, A. & Vila, J. M. (2006). Eur. J. Inorg. Chem. pp. 3016–3021.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chandra, S., Sangeetika & Rathi, A. (2001). J. Saudi Chem. Soc.5, 175–182.
  7. Demertzi, D. K., Varadinova, T., Genova, P., Souza, P. & Demertzi, M. A. (2007). Bioinorg. Chem. Appl. doi:10.1155/2007/56165. [DOI] [PMC free article] [PubMed]
  8. John, R. P., Sreekanth, A., Kurup, M. R. P., Usman, A., Razak, I. A. & Fun, H. K. (2003). Spectrochim. Acta A, 59, 1349–1358. [DOI] [PubMed]
  9. Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H. K. (2004). J. Mol. Struct.705, 63–70.
  10. Kizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met.-Org. Chem., 34, 653–665.
  11. Mirsha, D., Nasker, S., Drew, M. G. B. & Chattopadhay, S. K. (2006). Inorg. Chim. Acta, 359, 585–592.
  12. Offiong, O. E. & Martelli, S. (1997). Transition Met. Chem.22, 263–269.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sing, N. K., Sing, S. B., Shrivastav, A. & Sing, S. M. (2001). Proc. Indian Acad. Sci. Chem. Sess 113, 257–273.
  15. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012671/sj2492sup1.cif

e-64-0o988-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012671/sj2492Isup2.hkl

e-64-0o988-Isup2.hkl (195.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES