Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 7;64(Pt 6):o1006. doi: 10.1107/S1600536808012816

5-(4-Chloro­phen­yl)-1-methyl-3-oxocyclo­hexa­necarbonitrile

R T Sabapathy Mohan a, S Kamatchi a, M Subramanyam b, A Thiruvalluvar b,*, A Linden c
PMCID: PMC2961578  PMID: 21202532

Abstract

In the title mol­ecule, C14H14ClNO, the cyclo­hexane ring adopts a chair conformation. The cyano group and the methyl group have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. A C—H⋯π inter­action involving the benzene ring is found in the crystal structure.

Related literature

Subramanyam et al. (2007a ,b ) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted cyclo­hexane derivatives, in which the cyclo­hexane rings are in a chair conformation.graphic file with name e-64-o1006-scheme1.jpg

Experimental

Crystal data

  • C14H14ClNO

  • M r = 247.71

  • Monoclinic, Inline graphic

  • a = 23.3358 (6) Å

  • b = 6.0031 (2) Å

  • c = 20.8948 (6) Å

  • β = 122.386 (2)°

  • V = 2471.81 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 160 (1) K

  • 0.28 × 0.20 × 0.18 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.877, T max = 0.956

  • 28232 measured reflections

  • 2822 independent reflections

  • 2211 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.107

  • S = 1.05

  • 2822 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012816/ww2118sup1.cif

e-64-o1006-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012816/ww2118Isup2.hkl

e-64-o1006-Isup2.hkl (135.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCgi 0.99 2.60 3.5333 (18) 157

Symmetry code: (i) Inline graphic. Cg is the centroid of the benzene ring.

Acknowledgments

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06 (UGC-SERO), link No. 2355, 10/01/2007].

supplementary crystallographic information

Comment

Subramanyam et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted cyclohexane derivatives, in which the cyclohexane rings are in chair conformation. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 1 have axial and equatorial orientations respectively. The benzene ring at position 5 has an equatorial orientation. A C4—H4B···π(-x, y, 1/2 - z) interaction involving the benzene ring is found in the structure. No classical hydrogen bonds are found in the crystal structure.

Experimental

A mixture of 5–4'-chlorophenyl-3-methylcyclohex-2-enone (6.40 g, 0.02 mol), potassium cyanide (2.60 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethyl formamide (50 ml) and water (2 ml) was heated with stirring for 16–18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH2Cl2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 4.30 g (87%).

Refinement

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2, 0.98 Å for methyl C, 0.99 Å for methylene C and 1.00 Å for methine C; Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.

Crystal data

C14H14ClNO F000 = 1040
Mr = 247.71 Dx = 1.331 Mg m3
Monoclinic, C2/c Melting point: 358 K
Hall symbol: -C 2yc Mo Kα radiation λ = 0.71073 Å
a = 23.3358 (6) Å Cell parameters from 31960 reflections
b = 6.0031 (2) Å θ = 2.0–27.5º
c = 20.8948 (6) Å µ = 0.29 mm1
β = 122.386 (2)º T = 160 (1) K
V = 2471.81 (14) Å3 Prism, colourless
Z = 8 0.28 × 0.20 × 0.18 mm

Data collection

Nonius KappaCCD area-detector diffractometer 2822 independent reflections
Radiation source: Nonius FR590 sealed tube generator 2211 reflections with I > 2σ(I)
Monochromator: horizontally mounted graphite crystal Rint = 0.058
Detector resolution: 9 pixels mm-1 θmax = 27.5º
T = 160(1) K θmin = 2.1º
φ and ω scans with κ offsets h = −30→29
Absorption correction: multi-scan(Blessing, 1995) k = −7→7
Tmin = 0.877, Tmax = 0.956 l = −27→27
28232 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.107   w = 1/[σ2(Fo2) + (0.0525P)2 + 1.7764P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2822 reflections Δρmax = 0.26 e Å3
154 parameters Δρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.793 (2) Frames collected: 394 Seconds exposure per frame: 16 Degrees rotation per frame: 1.6 Crystal-Detector distance (mm): 30.0
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.25175 (2) 0.41436 (8) 0.08818 (3) 0.0406 (2)
O3 0.15529 (6) 1.0355 (2) 0.24871 (7) 0.0401 (4)
N12 0.08284 (8) 0.8728 (3) 0.02081 (8) 0.0387 (5)
C1 0.12125 (8) 0.5713 (3) 0.12750 (9) 0.0257 (5)
C2 0.16797 (8) 0.6816 (3) 0.20566 (9) 0.0296 (5)
C3 0.13140 (8) 0.8524 (3) 0.22416 (9) 0.0290 (5)
C4 0.06351 (8) 0.7819 (3) 0.21034 (9) 0.0292 (5)
C5 0.01764 (7) 0.6715 (3) 0.13228 (8) 0.0241 (4)
C6 0.05647 (8) 0.4842 (3) 0.12188 (9) 0.0264 (5)
C11 0.15935 (9) 0.3848 (3) 0.11531 (10) 0.0350 (5)
C12 0.10064 (8) 0.7426 (3) 0.06780 (9) 0.0277 (5)
C51 −0.04910 (7) 0.6001 (3) 0.12231 (8) 0.0239 (4)
C52 −0.10261 (8) 0.7514 (3) 0.09191 (8) 0.0270 (5)
C53 −0.16454 (8) 0.6975 (3) 0.08277 (9) 0.0293 (5)
C54 −0.17302 (8) 0.4867 (3) 0.10337 (9) 0.0289 (5)
C55 −0.12083 (9) 0.3334 (3) 0.13444 (10) 0.0322 (5)
C56 −0.05897 (8) 0.3916 (3) 0.14389 (10) 0.0304 (5)
H2A 0.18685 0.56475 0.24527 0.0355*
H2B 0.20638 0.75446 0.20642 0.0355*
H4A 0.04006 0.91413 0.21396 0.0350*
H4B 0.07101 0.67576 0.25040 0.0350*
H5 0.00699 0.78708 0.09293 0.0289*
H6A 0.02664 0.41375 0.07173 0.0316*
H6B 0.06906 0.36910 0.16120 0.0316*
H11A 0.17294 0.27012 0.15427 0.0524*
H11B 0.19981 0.44642 0.11878 0.0524*
H11C 0.12964 0.31858 0.06508 0.0524*
H52 −0.09668 0.89480 0.07705 0.0325*
H53 −0.20035 0.80334 0.06276 0.0353*
H55 −0.12702 0.19013 0.14917 0.0386*
H56 −0.02282 0.28695 0.16550 0.0365*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0277 (2) 0.0501 (3) 0.0477 (3) −0.0075 (2) 0.0227 (2) 0.0017 (2)
O3 0.0388 (7) 0.0398 (7) 0.0447 (7) −0.0129 (6) 0.0243 (6) −0.0142 (6)
N12 0.0368 (8) 0.0456 (9) 0.0359 (8) −0.0065 (7) 0.0210 (7) 0.0043 (7)
C1 0.0237 (8) 0.0280 (8) 0.0280 (8) −0.0011 (6) 0.0156 (7) −0.0011 (6)
C2 0.0240 (8) 0.0357 (9) 0.0279 (8) −0.0012 (7) 0.0131 (7) −0.0017 (7)
C3 0.0287 (8) 0.0343 (9) 0.0220 (7) −0.0040 (7) 0.0122 (7) −0.0022 (7)
C4 0.0299 (8) 0.0316 (9) 0.0297 (8) −0.0017 (7) 0.0184 (7) −0.0036 (7)
C5 0.0242 (7) 0.0249 (8) 0.0253 (7) −0.0005 (6) 0.0146 (6) 0.0019 (6)
C6 0.0257 (8) 0.0276 (8) 0.0287 (8) −0.0037 (6) 0.0165 (7) −0.0023 (7)
C11 0.0339 (9) 0.0342 (9) 0.0438 (10) 0.0003 (7) 0.0255 (8) −0.0037 (8)
C12 0.0248 (8) 0.0338 (9) 0.0284 (8) −0.0071 (7) 0.0169 (7) −0.0056 (7)
C51 0.0239 (7) 0.0286 (8) 0.0215 (7) −0.0019 (6) 0.0136 (6) −0.0010 (6)
C52 0.0272 (8) 0.0285 (8) 0.0254 (8) −0.0012 (7) 0.0141 (6) 0.0037 (6)
C53 0.0242 (8) 0.0352 (9) 0.0260 (8) 0.0019 (7) 0.0117 (7) 0.0038 (7)
C54 0.0240 (8) 0.0365 (9) 0.0276 (8) −0.0071 (7) 0.0147 (7) −0.0036 (7)
C55 0.0348 (9) 0.0265 (8) 0.0423 (10) −0.0033 (7) 0.0254 (8) 0.0014 (7)
C56 0.0299 (8) 0.0273 (8) 0.0394 (9) 0.0032 (7) 0.0221 (8) 0.0047 (7)

Geometric parameters (Å, °)

Cl1—C54 1.744 (2) C54—C55 1.380 (3)
O3—C3 1.215 (2) C55—C56 1.393 (3)
N12—C12 1.145 (2) C2—H2A 0.9900
C1—C2 1.545 (2) C2—H2B 0.9900
C1—C6 1.544 (3) C4—H4A 0.9900
C1—C11 1.533 (3) C4—H4B 0.9900
C1—C12 1.484 (2) C5—H5 1.0000
C2—C3 1.511 (3) C6—H6A 0.9900
C3—C4 1.511 (3) C6—H6B 0.9900
C4—C5 1.541 (2) C11—H11A 0.9800
C5—C6 1.531 (3) C11—H11B 0.9800
C5—C51 1.518 (3) C11—H11C 0.9800
C51—C52 1.392 (3) C52—H52 0.9500
C51—C56 1.391 (3) C53—H53 0.9500
C52—C53 1.391 (3) C55—H55 0.9500
C53—C54 1.385 (3) C56—H56 0.9500
Cl1···N12i 3.335 (2) H4B···C51ii 3.0000
Cl1···C12i 3.397 (2) H4B···C52ii 3.0000
Cl1···H2Aii 3.0900 H4B···C53ii 2.9600
O3···H6Biii 2.7300 H4B···C54ii 2.9200
O3···H11Aiii 2.6300 H4B···C55ii 2.8900
O3···H55iv 2.7100 H4B···C56ii 2.9200
N12···Cl1v 3.335 (2) H5···N12 2.9200
N12···H5 2.9200 H5···C12 2.5200
N12···H6Avi 2.8200 H5···H52 2.3500
N12···H52vii 2.6300 H6A···C56 3.0800
N12···H11Ciii 2.8500 H6A···H11C 2.5500
C4···C12 3.527 (3) H6A···N12vi 2.8200
C12···C4 3.527 (3) H6A···C12vi 2.9900
C12···Cl1v 3.397 (2) H6B···O3ix 2.7300
C6···H56 2.7300 H6B···C56 2.8100
C12···H5 2.5200 H6B···H11A 2.5700
C12···H6Avi 2.9900 H6B···H56 2.2500
C51···H4Bii 3.0000 H11A···O3ix 2.6300
C52···H4A 3.0700 H11A···H2A 2.4900
C52···H55iii 3.0700 H11A···H6B 2.5700
C52···H4Bii 3.0000 H11B···H2B 2.5500
C52···H11Cvi 3.0200 H11C···N12ix 2.8500
C53···H4Bii 2.9600 H11C···H6A 2.5500
C53···H53viii 2.9900 H11C···C52vi 3.0200
C54···H4Bii 2.9200 H52···C55iii 3.0700
C55···H52ix 3.0700 H52···H5 2.3500
C55···H4Bii 2.8900 H52···N12vii 2.6300
C56···H6A 3.0800 H53···C53viii 2.9900
C56···H6B 2.8100 H53···H53viii 2.4800
C56···H4Bii 2.9200 H55···C52ix 3.0700
H2A···H11A 2.4900 H55···O3x 2.7100
H2A···Cl1ii 3.0900 H56···C6 2.7300
H2B···H11B 2.5500 H56···H4Aix 2.5700
H4A···C52 3.0700 H56···H6B 2.2500
H4A···H56iii 2.5700
C2—C1—C6 109.48 (15) C3—C2—H2B 109.00
C2—C1—C11 110.17 (15) H2A—C2—H2B 108.00
C2—C1—C12 108.61 (15) C3—C4—H4A 109.00
C6—C1—C11 111.80 (15) C3—C4—H4B 109.00
C6—C1—C12 107.91 (15) C5—C4—H4A 109.00
C11—C1—C12 108.79 (15) C5—C4—H4B 109.00
C1—C2—C3 112.70 (16) H4A—C4—H4B 108.00
O3—C3—C2 121.85 (19) C4—C5—H5 107.00
O3—C3—C4 122.09 (18) C6—C5—H5 107.00
C2—C3—C4 116.05 (15) C51—C5—H5 107.00
C3—C4—C5 112.68 (15) C1—C6—H6A 109.00
C4—C5—C6 109.74 (14) C1—C6—H6B 109.00
C4—C5—C51 110.28 (14) C5—C6—H6A 109.00
C6—C5—C51 114.51 (15) C5—C6—H6B 109.00
C1—C6—C5 111.74 (15) H6A—C6—H6B 108.00
N12—C12—C1 178.0 (2) C1—C11—H11A 109.00
C5—C51—C52 118.81 (16) C1—C11—H11B 109.00
C5—C51—C56 123.05 (16) C1—C11—H11C 109.00
C52—C51—C56 118.12 (18) H11A—C11—H11B 109.00
C51—C52—C53 121.54 (17) H11A—C11—H11C 109.00
C52—C53—C54 118.75 (18) H11B—C11—H11C 109.00
Cl1—C54—C53 118.89 (15) C51—C52—H52 119.00
Cl1—C54—C55 119.86 (15) C53—C52—H52 119.00
C53—C54—C55 121.2 (2) C52—C53—H53 121.00
C54—C55—C56 119.07 (17) C54—C53—H53 121.00
C51—C56—C55 121.26 (18) C54—C55—H55 120.00
C1—C2—H2A 109.00 C56—C55—H55 120.00
C1—C2—H2B 109.00 C51—C56—H56 119.00
C3—C2—H2A 109.00 C55—C56—H56 119.00
C6—C1—C2—C3 −51.31 (19) C4—C5—C51—C52 88.61 (17)
C11—C1—C2—C3 −174.65 (16) C4—C5—C51—C56 −89.75 (19)
C12—C1—C2—C3 66.3 (2) C6—C5—C51—C52 −147.05 (14)
C2—C1—C6—C5 58.91 (17) C6—C5—C51—C56 34.6 (2)
C11—C1—C6—C5 −178.71 (13) C5—C51—C52—C53 −178.71 (14)
C12—C1—C6—C5 −59.12 (17) C56—C51—C52—C53 −0.3 (2)
C1—C2—C3—O3 −133.05 (17) C5—C51—C56—C55 179.36 (15)
C1—C2—C3—C4 47.0 (2) C52—C51—C56—C55 1.0 (2)
O3—C3—C4—C5 132.96 (17) C51—C52—C53—C54 −1.1 (2)
C2—C3—C4—C5 −47.1 (2) C52—C53—C54—Cl1 −177.24 (12)
C3—C4—C5—C6 51.79 (19) C52—C53—C54—C55 1.8 (2)
C3—C4—C5—C51 178.83 (14) Cl1—C54—C55—C56 177.93 (14)
C4—C5—C6—C1 −59.17 (18) C53—C54—C55—C56 −1.1 (3)
C51—C5—C6—C1 176.20 (12) C54—C55—C56—C51 −0.3 (3)

Symmetry codes: (i) x−1/2, y−1/2, z; (ii) −x, y, −z+1/2; (iii) x, y+1, z; (iv) −x, y+1, −z+1/2; (v) x+1/2, y+1/2, z; (vi) −x, −y+1, −z; (vii) −x, −y+2, −z; (viii) −x−1/2, −y+3/2, −z; (ix) x, y−1, z; (x) −x, y−1, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4B···Cgii 0.99 2.60 3.5333 (18) 157

Symmetry codes: (ii) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2118).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  4. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Subramanyam, M., Thiruvalluvar, A., Mohan, R. T. S. & Kamatchi, S. (2007a). Acta Cryst. E63, o2717.
  8. Subramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007b). Acta Cryst. E63, o2715–o2716.
  9. Thiruvalluvar, A., Subramanyam, M., Mohan, R. T. S., Kamatchi, S. & Murugavel, K. (2007). Acta Cryst. E63, o2780.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012816/ww2118sup1.cif

e-64-o1006-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012816/ww2118Isup2.hkl

e-64-o1006-Isup2.hkl (135.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES