Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 21;64(Pt 6):o1121. doi: 10.1107/S1600536808014670

(1Z,1′Z,3E,3′E)-1,1′-Diphenyl-3,3′-[(1S,2S)-cyclo­hexane-1,2-diyldinitrilo]dibut-1-en-1-ol

Xiu-Zhi Li a, Zhi-Rong Qu a,*
PMCID: PMC2961585  PMID: 21202632

Abstract

A new tetra­dentate chiral Schiff base ligand, C26H30N2O2, has been synthesized by the reaction of 1-phenyl­butane-1,3-dione with (1S,2S)-(−)-1,2-diamino­cyclo­hexane. The chiral centers in the mol­ecule have the same S configuration, since the absolute configuration was determined by that of the starting reagent (1S,2S)-(−)-1,2-diamino­hexane. The cyclo­hexane ring is in a chair conformation, and the substituents are equatorial in the most stable conformation (trans-cyclo­hexyl). The crystal structure is stabilized by two intra­molecular O—H⋯N hydrogen bonds and a weak C—H⋯π inter­action.

Related literature

For the chemistry of Schiff bases, see: Alemi & Shaabani (2000); Bandini et al. (1999, 2000); Belokon et al. (1997); Cozzi (2003); Jiang et al. (1995); Kureshy et al. (2001); Sasaki et al. (1991).graphic file with name e-64-o1121-scheme1.jpg

Experimental

Crystal data

  • C26H30N2O2

  • M r = 402.52

  • Orthorhombic, Inline graphic

  • a = 8.9073 (11) Å

  • b = 10.1205 (13) Å

  • c = 26.476 (3) Å

  • V = 2386.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.980, T max = 0.990

  • 22130 measured reflections

  • 2683 independent reflections

  • 1952 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.159

  • S = 1.07

  • 2683 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014670/bx2143sup1.cif

e-64-o1121-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014670/bx2143Isup2.hkl

e-64-o1121-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N2 0.82 1.93 2.650 (3) 146
O1—H1⋯N1 0.82 1.91 2.629 (4) 145
C19—H19ACg3i 0.97 2.96 3.795 (5) 144

Symmetry code: (i) Inline graphic. Cg3 is the centroid of the C10–C15 ring.

Acknowledgments

This work was supported by a Start-up Grant from Southeast University to ZRQ.

supplementary crystallographic information

Comment

In recent years, research on Schiff bases has been intensified for the reason that some of them can form materials with non-linear optical (NLO) activity (Alemi & Shaabani, 2000), and some can be used for the asymmetric oxidation of methyl phenyl sulfides (Sasaki et al., 1991). The search for new chiral ligands for asymmetric synthesis is an important task in organic chemistry. Various chiral Schiff bases are widely used in asymmetric reactions (Jiang et al., 1995; Belokon et al., 1997; Bandini et al., 1999, 2000; Kureshy et al., 2001; Cozzi, 2003). Herein, we report the synthesis and crystal structure of a new chiral Schiff base ligand (1Z,1'Z,3E,3'E)-3,3'-((1S,2S)-cyclohexane-1,2-diylbis(azan-1-yl-1-ylidene))bis(1-phenylbut-1-en-1-ol). Fig. 1 show, the absolute configurations of the chiral centers and they have the same chirality (S-configuration). The cyclohexane ring is of chair conformation, and the substituents are equatorial in the most stable conformation of trans-cyclohexyl. The crystal structure is stabilized by two intramolecular O—H···N hydrogen bonds and a weak C—H···π interaction (Table 1).

Experimental

1-phenylbutane-1,3-dione (3.89 g, 0.024 mol) in 6 ml of chloroform was added dropwise to a solution of chloroform (20 ml) containing (1S, 2S)-(–)-1,2-diaminocyclohexane (1.14 g, 0.01 mol), which was kept at 0–5°C with vigorous stirring during the reaction. After complete addition which took approximately 30 min, the mixture was stirred for another 1 h at room temperature. After the evaporation of the solvent under reduced pressure, the crude product was recrystallized by slowly evaporating with petroleum ether to yield colorless crystals.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, O atoms to which they are bonded, with C—H = 0.93 to 0.98Å, O—H = 0.82 Å , with Uiso (H) = 1.2Ueq (Caromatic, Cmethylene), Uiso(H) = 1.5Ueq (Cmethyl) or 1.5 Ueq(O). In the absence of significant anomalous scattering effects, 2006 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

A view of the compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C26H30N2O2 F000 = 864
Mr = 402.52 Dx = 1.120 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 4136 reflections
a = 8.9073 (11) Å θ = 3.1–27.5º
b = 10.1205 (13) Å µ = 0.07 mm1
c = 26.476 (3) Å T = 293 (2) K
V = 2386.7 (5) Å3 Block, colorless
Z = 4 0.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer 2683 independent reflections
Radiation source: fine-focus sealed tube 1952 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.062
Detector resolution: 13.6612 pixels mm-1 θmax = 26.0º
T = 293(2) K θmin = 2.4º
ω scans h = −10→10
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005) k = −12→12
Tmin = 0.980, Tmax = 0.990 l = −32→32
22130 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.159   w = 1/[σ2(Fo2) + (0.0753P)2 + 0.2595P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2683 reflections Δρmax = 0.29 e Å3
275 parameters Δρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N2 0.8242 (3) 0.2435 (3) 0.96116 (10) 0.0576 (7)
C17 0.8209 (4) 0.1345 (3) 0.92486 (12) 0.0562 (8)
H17 0.9072 0.1434 0.9021 0.067*
N1 0.6697 (4) 0.2620 (3) 0.86429 (10) 0.0618 (8)
O2 0.7103 (3) 0.3353 (2) 1.04671 (9) 0.0684 (7)
H2A 0.7189 0.2838 1.0230 0.103*
C1' 0.7786 (4) 0.4406 (3) 1.03675 (13) 0.0582 (8)
C18 0.8342 (5) 0.0039 (3) 0.95283 (14) 0.0669 (10)
H18A 0.9290 0.0014 0.9708 0.080*
H18B 0.7541 −0.0025 0.9776 0.080*
C2 0.6168 (4) 0.4861 (4) 0.84749 (13) 0.0597 (9)
H2 0.5630 0.5613 0.8564 0.072*
C3' 0.8907 (4) 0.3615 (4) 0.95676 (13) 0.0571 (8)
C3 0.5973 (4) 0.3737 (4) 0.87611 (13) 0.0597 (9)
C21 0.6703 (6) 0.0219 (4) 0.85724 (15) 0.0776 (12)
H21A 0.5761 0.0238 0.8389 0.093*
H21B 0.7512 0.0291 0.8329 0.093*
O1 0.7936 (4) 0.3983 (3) 0.79076 (10) 0.0852 (9)
H1 0.7875 0.3376 0.8112 0.128*
C16 0.6767 (4) 0.1386 (3) 0.89317 (13) 0.0584 (9)
H16 0.5899 0.1345 0.9159 0.070*
C4 0.7242 (4) 0.6191 (4) 0.77629 (13) 0.0653 (10)
C2' 0.8698 (4) 0.4569 (4) 0.99355 (13) 0.0618 (9)
H2' 0.9192 0.5372 0.9896 0.074*
C10 0.7610 (4) 0.5522 (4) 1.07347 (14) 0.0648 (9)
C23 0.9890 (5) 0.3907 (4) 0.91182 (14) 0.0684 (10)
H23A 0.9330 0.3765 0.8813 0.103*
H23B 1.0747 0.3332 0.9123 0.103*
H23C 1.0219 0.4809 0.9132 0.103*
C1 0.7137 (4) 0.4938 (4) 0.80549 (13) 0.0629 (9)
C22 0.4918 (5) 0.3766 (4) 0.92075 (15) 0.0778 (12)
H22A 0.5438 0.3469 0.9504 0.117*
H22B 0.4079 0.3194 0.9143 0.117*
H22C 0.4565 0.4652 0.9259 0.117*
C19 0.8253 (5) −0.1133 (4) 0.91717 (15) 0.0772 (11)
H19A 0.9126 −0.1136 0.8953 0.093*
H19B 0.8262 −0.1946 0.9366 0.093*
C20 0.6840 (6) −0.1081 (4) 0.88527 (18) 0.0847 (12)
H20A 0.6855 −0.1801 0.8611 0.102*
H20B 0.5971 −0.1197 0.9069 0.102*
C15 0.7371 (5) 0.5242 (4) 1.12405 (15) 0.0771 (11)
H15 0.7328 0.4368 1.1348 0.093*
C9 0.6005 (5) 0.6985 (4) 0.76822 (16) 0.0787 (12)
H9 0.5080 0.6744 0.7817 0.094*
C11 0.7644 (5) 0.6836 (4) 1.05852 (18) 0.0824 (13)
H11 0.7793 0.7047 1.0247 0.099*
C12 0.7458 (6) 0.7824 (5) 1.0933 (2) 0.1040 (17)
H12 0.7483 0.8701 1.0828 0.125*
C8 0.6128 (7) 0.8127 (5) 0.74050 (19) 0.1055 (17)
H8 0.5290 0.8658 0.7352 0.127*
C14 0.7197 (7) 0.6255 (5) 1.15854 (18) 0.1006 (16)
H14 0.7049 0.6065 1.1925 0.121*
C5 0.8588 (5) 0.6560 (6) 0.75543 (18) 0.1002 (16)
H5 0.9425 0.6022 0.7597 0.120*
C13 0.7242 (6) 0.7548 (6) 1.1424 (2) 0.1062 (18)
H13 0.7123 0.8232 1.1655 0.127*
C6 0.8718 (8) 0.7720 (7) 0.7282 (3) 0.133 (2)
H6 0.9640 0.7979 0.7150 0.160*
C7 0.7471 (11) 0.8477 (6) 0.7210 (2) 0.126 (2)
H7 0.7546 0.9251 0.7023 0.152*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N2 0.0638 (17) 0.0557 (16) 0.0532 (15) −0.0045 (15) 0.0003 (14) −0.0004 (14)
C17 0.061 (2) 0.0553 (19) 0.0528 (17) 0.0016 (18) 0.0041 (16) 0.0009 (16)
N1 0.0690 (19) 0.0633 (18) 0.0531 (15) 0.0081 (17) −0.0017 (15) 0.0041 (14)
O2 0.0813 (18) 0.0624 (15) 0.0614 (14) −0.0075 (15) 0.0111 (14) −0.0046 (12)
C1' 0.062 (2) 0.0504 (18) 0.0618 (19) −0.0020 (18) −0.0071 (18) 0.0042 (17)
C18 0.077 (3) 0.059 (2) 0.065 (2) 0.003 (2) −0.006 (2) 0.0059 (18)
C2 0.063 (2) 0.061 (2) 0.0551 (18) 0.0043 (18) 0.0048 (17) 0.0030 (17)
C3' 0.0552 (19) 0.0579 (19) 0.0582 (19) −0.0051 (17) −0.0012 (17) 0.0089 (17)
C3 0.059 (2) 0.070 (2) 0.0505 (18) 0.006 (2) 0.0025 (16) 0.0044 (18)
C21 0.091 (3) 0.073 (3) 0.069 (2) −0.002 (2) −0.013 (2) −0.011 (2)
O1 0.091 (2) 0.097 (2) 0.0675 (16) 0.0300 (19) 0.0233 (16) 0.0236 (15)
C16 0.065 (2) 0.0539 (19) 0.0566 (18) 0.0023 (19) 0.0052 (18) 0.0011 (16)
C4 0.065 (2) 0.077 (2) 0.0537 (18) −0.010 (2) −0.0035 (18) 0.0070 (19)
C2' 0.067 (2) 0.0527 (19) 0.066 (2) −0.0099 (18) 0.0021 (18) 0.0005 (18)
C10 0.061 (2) 0.061 (2) 0.072 (2) 0.0020 (19) −0.0050 (19) −0.0072 (19)
C23 0.067 (2) 0.072 (2) 0.066 (2) −0.007 (2) 0.0063 (19) 0.008 (2)
C1 0.058 (2) 0.074 (2) 0.0565 (18) 0.009 (2) 0.0001 (17) 0.0050 (19)
C22 0.080 (3) 0.083 (3) 0.070 (2) 0.014 (2) 0.026 (2) 0.014 (2)
C19 0.090 (3) 0.056 (2) 0.086 (3) 0.006 (2) 0.004 (2) 0.001 (2)
C20 0.100 (3) 0.060 (2) 0.094 (3) −0.001 (2) −0.003 (3) −0.015 (2)
C15 0.082 (3) 0.083 (3) 0.067 (2) 0.004 (2) −0.005 (2) −0.008 (2)
C9 0.078 (3) 0.083 (3) 0.076 (3) 0.001 (2) −0.012 (2) 0.020 (2)
C11 0.088 (3) 0.064 (2) 0.095 (3) 0.000 (2) 0.007 (3) −0.001 (2)
C12 0.106 (4) 0.064 (3) 0.142 (5) 0.002 (3) 0.016 (4) −0.023 (3)
C8 0.136 (5) 0.090 (3) 0.090 (3) −0.001 (4) −0.018 (3) 0.031 (3)
C14 0.110 (4) 0.114 (4) 0.078 (3) 0.014 (4) −0.010 (3) −0.030 (3)
C5 0.077 (3) 0.124 (4) 0.100 (3) −0.017 (3) 0.012 (3) 0.031 (3)
C13 0.096 (4) 0.091 (4) 0.131 (5) 0.001 (3) 0.001 (4) −0.054 (4)
C6 0.120 (5) 0.149 (6) 0.130 (5) −0.056 (5) 0.021 (4) 0.039 (5)
C7 0.180 (7) 0.099 (4) 0.100 (4) −0.037 (5) −0.006 (5) 0.034 (3)

Geometric parameters (Å, °)

N2—C3' 1.338 (4) C10—C15 1.385 (5)
N2—C17 1.463 (4) C10—C11 1.388 (5)
C17—C18 1.520 (5) C23—H23A 0.9600
C17—C16 1.535 (5) C23—H23B 0.9600
C17—H17 0.9800 C23—H23C 0.9600
N1—C3 1.339 (5) C22—H22A 0.9600
N1—C16 1.465 (4) C22—H22B 0.9600
O2—C1' 1.255 (4) C22—H22C 0.9600
O2—H2A 0.8200 C19—C20 1.517 (6)
C1'—C2' 1.413 (5) C19—H19A 0.9700
C1'—C10 1.498 (5) C19—H19B 0.9700
C18—C19 1.518 (5) C20—H20A 0.9700
C18—H18A 0.9700 C20—H20B 0.9700
C18—H18B 0.9700 C15—C14 1.382 (6)
C2—C3 1.378 (5) C15—H15 0.9300
C2—C1 1.409 (5) C9—C8 1.374 (6)
C2—H2 0.9300 C9—H9 0.9300
C3'—C2' 1.384 (5) C11—C12 1.370 (6)
C3'—C23 1.506 (5) C11—H11 0.9300
C3—C22 1.510 (5) C12—C13 1.341 (7)
C21—C20 1.515 (5) C12—H12 0.9300
C21—C16 1.517 (5) C8—C7 1.350 (8)
C21—H21A 0.9700 C8—H8 0.9300
C21—H21B 0.9700 C14—C13 1.377 (7)
O1—C1 1.262 (4) C14—H14 0.9300
O1—H1 0.8200 C5—C6 1.382 (8)
C16—H16 0.9800 C5—H5 0.9300
C4—C5 1.372 (6) C13—H13 0.9300
C4—C9 1.380 (5) C6—C7 1.363 (9)
C4—C1 1.488 (5) C6—H6 0.9300
C2'—H2' 0.9300 C7—H7 0.9300
C3'—N2—C17 128.6 (3) H23A—C23—H23C 109.5
N2—C17—C18 109.5 (3) H23B—C23—H23C 109.5
N2—C17—C16 110.8 (3) O1—C1—C2 123.2 (3)
C18—C17—C16 110.8 (3) O1—C1—C4 117.2 (3)
N2—C17—H17 108.6 C2—C1—C4 119.7 (3)
C18—C17—H17 108.6 C3—C22—H22A 109.5
C16—C17—H17 108.6 C3—C22—H22B 109.5
C3—N1—C16 128.2 (3) H22A—C22—H22B 109.5
C1'—O2—H2A 109.5 C3—C22—H22C 109.5
O2—C1'—C2' 123.2 (3) H22A—C22—H22C 109.5
O2—C1'—C10 116.9 (3) H22B—C22—H22C 109.5
C2'—C1'—C10 119.8 (3) C20—C19—C18 111.2 (3)
C19—C18—C17 111.9 (3) C20—C19—H19A 109.4
C19—C18—H18A 109.2 C18—C19—H19A 109.4
C17—C18—H18A 109.2 C20—C19—H19B 109.4
C19—C18—H18B 109.2 C18—C19—H19B 109.4
C17—C18—H18B 109.2 H19A—C19—H19B 108.0
H18A—C18—H18B 107.9 C21—C20—C19 111.7 (4)
C3—C2—C1 123.8 (3) C21—C20—H20A 109.3
C3—C2—H2 118.1 C19—C20—H20A 109.3
C1—C2—H2 118.1 C21—C20—H20B 109.3
N2—C3'—C2' 120.1 (3) C19—C20—H20B 109.3
N2—C3'—C23 120.1 (3) H20A—C20—H20B 107.9
C2'—C3'—C23 119.8 (3) C14—C15—C10 120.3 (4)
N1—C3—C2 120.5 (3) C14—C15—H15 119.9
N1—C3—C22 119.9 (3) C10—C15—H15 119.9
C2—C3—C22 119.6 (3) C8—C9—C4 120.6 (5)
C20—C21—C16 111.5 (3) C8—C9—H9 119.7
C20—C21—H21A 109.3 C4—C9—H9 119.7
C16—C21—H21A 109.3 C12—C11—C10 120.3 (5)
C20—C21—H21B 109.3 C12—C11—H11 119.8
C16—C21—H21B 109.3 C10—C11—H11 119.8
H21A—C21—H21B 108.0 C13—C12—C11 121.1 (5)
C1—O1—H1 109.5 C13—C12—H12 119.4
N1—C16—C21 109.5 (3) C11—C12—H12 119.4
N1—C16—C17 110.1 (3) C7—C8—C9 119.7 (6)
C21—C16—C17 110.7 (3) C7—C8—H8 120.2
N1—C16—H16 108.8 C9—C8—H8 120.2
C21—C16—H16 108.8 C13—C14—C15 119.8 (5)
C17—C16—H16 108.8 C13—C14—H14 120.1
C5—C4—C9 118.5 (4) C15—C14—H14 120.1
C5—C4—C1 119.7 (4) C4—C5—C6 120.9 (6)
C9—C4—C1 121.8 (4) C4—C5—H5 119.5
C3'—C2'—C1' 124.5 (3) C6—C5—H5 119.5
C3'—C2'—H2' 117.8 C12—C13—C14 120.2 (5)
C1'—C2'—H2' 117.8 C12—C13—H13 119.9
C15—C10—C11 118.3 (4) C14—C13—H13 119.9
C15—C10—C1' 119.3 (3) C7—C6—C5 118.8 (6)
C11—C10—C1' 122.3 (4) C7—C6—H6 120.6
C3'—C23—H23A 109.5 C5—C6—H6 120.6
C3'—C23—H23B 109.5 C8—C7—C6 121.5 (5)
H23A—C23—H23B 109.5 C8—C7—H7 119.3
C3'—C23—H23C 109.5 C6—C7—H7 119.3
C3'—N2—C17—C18 141.4 (4) C3—C2—C1—O1 −1.2 (6)
C3'—N2—C17—C16 −96.1 (4) C3—C2—C1—C4 178.6 (3)
N2—C17—C18—C19 177.8 (3) C5—C4—C1—O1 −34.7 (6)
C16—C17—C18—C19 55.2 (4) C9—C4—C1—O1 143.5 (4)
C17—N2—C3'—C2' 174.1 (3) C5—C4—C1—C2 145.5 (4)
C17—N2—C3'—C23 −6.1 (5) C9—C4—C1—C2 −36.3 (5)
C16—N1—C3—C2 172.3 (3) C17—C18—C19—C20 −54.6 (5)
C16—N1—C3—C22 −8.4 (6) C16—C21—C20—C19 −55.7 (5)
C1—C2—C3—N1 −1.4 (6) C18—C19—C20—C21 54.4 (5)
C1—C2—C3—C22 179.4 (4) C11—C10—C15—C14 −1.0 (7)
C3—N1—C16—C21 141.4 (4) C1'—C10—C15—C14 −179.6 (4)
C3—N1—C16—C17 −96.7 (4) C5—C4—C9—C8 −0.9 (6)
C20—C21—C16—N1 177.5 (4) C1—C4—C9—C8 −179.1 (4)
C20—C21—C16—C17 56.0 (5) C15—C10—C11—C12 0.6 (7)
N2—C17—C16—N1 61.4 (3) C1'—C10—C11—C12 179.1 (4)
C18—C17—C16—N1 −176.9 (3) C10—C11—C12—C13 0.0 (9)
N2—C17—C16—C21 −177.4 (3) C4—C9—C8—C7 0.0 (7)
C18—C17—C16—C21 −55.6 (4) C10—C15—C14—C13 0.8 (8)
N2—C3'—C2'—C1' −1.1 (6) C9—C4—C5—C6 1.9 (7)
C23—C3'—C2'—C1' 179.1 (3) C1—C4—C5—C6 −179.9 (5)
O2—C1'—C2'—C3' 2.2 (6) C11—C12—C13—C14 −0.3 (9)
C10—C1'—C2'—C3' −178.4 (3) C15—C14—C13—C12 −0.2 (9)
O2—C1'—C10—C15 30.0 (5) C4—C5—C6—C7 −2.0 (9)
C2'—C1'—C10—C15 −149.4 (4) C9—C8—C7—C6 0.0 (10)
O2—C1'—C10—C11 −148.5 (4) C5—C6—C7—C8 1.0 (11)
C2'—C1'—C10—C11 32.1 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···N2 0.82 1.93 2.650 (3) 146
O1—H1···N1 0.82 1.91 2.629 (4) 145
C19—H19A···Cg3i 0.97 2.96 3.795 (5) 144

Symmetry codes: (i) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2143).

References

  1. Alemi, A. A. & Shaabani, B. (2000). Acta Chim. Slov.47, 363–369.
  2. Bandini, M., Cozzi, P. G., Melchioree, P. & Umani-Ronchi, A. (1999). Angew. Chem. Int. Ed.38, 3357–3359. [DOI] [PubMed]
  3. Bandini, M., Cozzi, P. G. & Umani-Ronchi, A. (2000). Angew. Chem. Int. Ed.39, 2327–2330. [DOI] [PubMed]
  4. Belokon, Y., Flego, M., Ikonnikov, N., Moscalenko, M., North, M., Orizu, C., Tararov, V. & Tasinazzo, M. (1997). J. Chem. Soc. Perkin Trans. 1, pp. 1293–1295.
  5. Cozzi, P. G. (2003). Angew. Chem. Int. Ed.42, 2895–2898.
  6. Jiang, Y., Zhou, X., Hu, W., Wu, L. & Mi, A. (1995). Tetrahedron Asymmetry, 6, 405–408.
  7. Kureshy, R. I., Khan, N. H., Abdi, S. H. R., Patel, S. T. & Jasra, R. V. (2001). Tetrahedron Lett.42, 2915–2918.
  8. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  9. Sasaki, C., Nakajima, K. & Kojima, M. (1991). Bull. Chem. Soc. Jpn, 64, 1318–1324.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014670/bx2143sup1.cif

e-64-o1121-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014670/bx2143Isup2.hkl

e-64-o1121-Isup2.hkl (131.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES