Abstract
The title compound, [CuBr(C9H9N5)]n, has been prepared by the solvothermal treatment of CuBr with 3-(2-allyl-2H-tetrazol-5-yl)pyridine. It is a new homometallic CuI olefin coordination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetrazol-5-yl)pyridine ligands and bonded to one terminal Br atom each. The organic ligand acts as a bidentate ligand connecting two neighboring Cu centers through the N atom of the pyridine ring and the double bond of the allyl group. A three-dimensional structure is formed through weak Cu—Br [3.1579 (8) Å], C—H⋯Br and C—H⋯N interactions.
Related literature
For the solvothermal synthesis and related structures, see: Ye et al. (2005 ▶, 2007 ▶).
Experimental
Crystal data
[CuBr(C9H9N5)]
M r = 330.66
Triclinic,
a = 7.4464 (15) Å
b = 7.7982 (16) Å
c = 9.940 (2) Å
α = 80.15 (3)°
β = 76.02 (3)°
γ = 85.13 (3)°
V = 551.3 (2) Å3
Z = 2
Mo Kα radiation
μ = 5.58 mm−1
T = 293 (2) K
0.2 × 0.15 × 0.1 mm
Data collection
Rigaku Mercury2 diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.720, T max = 1 (expected range = 0.412–0.572)
5748 measured reflections
2522 independent reflections
2173 reflections with I > 2σ(I)
R int = 0.032
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.072
S = 1.11
2522 reflections
145 parameters
H-atom parameters constrained
Δρmax = 0.41 e Å−3
Δρmin = −0.44 e Å−3
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2003 ▶) and CAMERON (Pearce et al., 2000 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010313/dn2335sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010313/dn2335Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1⋯Br1i | 0.93 | 2.90 | 3.776 (3) | 157 |
| C2—H2⋯N5i | 0.93 | 2.62 | 3.415 (4) | 144 |
| C9—H9A⋯N3ii | 0.97 | 2.88 | 3.800 (4) | 159 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.
supplementary crystallographic information
Comment
Under hydrothermal or solvothermal conditions, some interesting reactions can be carried out leading to new compounds, while It is worth noting that these products could not be synthesized using conventional solution techniques. In sealed tube, unstable copper (I) salt can exist under vacuums, and then interesting copper (I) coordination compound can be obtained (Ye et al., 2005, 2007). The title compound is obtained through solvothermal treatment of CuBr and 3-(2-allyl-2H-tetrazol -5-yl) pyridine in methanol solvent at 75°C, colorless block crystals suitable for X-ray diffractions have been isolated. have been isolated.
The copper(I) is coordinated to two olefinic ligands and one terminal Br atom in a trigonal environment (Fig 1). The olefin ligands link the neighbouring Cu centers to form an homometallic CuI coordination polymer developping along the c axis. The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands coordinate to copper (I) centers through N atom of pyridine ring and double bond of allyl group. Unfortunately, the N atoms of tetrazole ring fail to coordinate to Cu(I).
Finally, weak Cu—Br, C-H···Br and C—H···N (Table 1) interactions result in the formation of a three-dimensionnal structure (Fig. 2)
Experimental
A mixture of 3-(2-allyl-2H-tetrazol-5-yl) pyridine(20 mg, 0.2 mmol), CuBr (17.9 mg,0.2 mmol), and methanol (2 mL) sealed in a glass tube were maintained at 75 °C. Crystals suitable for X-ray analysis were obtained after 5 days
Refinement
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) or 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).
Figures
Fig. 1.
A view of the title compound with the atomic-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x,y + 1, z - 1; (ii) x, y - 1, z + 1].
Fig. 2.
Partial packing view of the title compound showing the formationof the three dimensionnal network. Weak interactions are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Crystal data
| [CuBr(C9H9N5)] | Z = 2 |
| Mr = 330.66 | F(000) = 324 |
| Triclinic, P1 | Dx = 1.992 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.4464 (15) Å | Cell parameters from 5524 reflections |
| b = 7.7982 (16) Å | θ = 3.1–28.8° |
| c = 9.940 (2) Å | µ = 5.58 mm−1 |
| α = 80.15 (3)° | T = 293 K |
| β = 76.02 (3)° | Block, colorless |
| γ = 85.13 (3)° | 0.2 × 0.15 × 0.1 mm |
| V = 551.3 (2) Å3 |
Data collection
| Rigaku Mercury2 diffractometer | 2522 independent reflections |
| Radiation source: fine-focus sealed tube | 2173 reflections with I > 2σ(I) |
| graphite | Rint = 0.032 |
| Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
| CCD_Profile_fitting scans | h = −9→9 |
| Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
| Tmin = 0.720, Tmax = 1 | l = −12→12 |
| 5748 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.072 | H-atom parameters constrained |
| S = 1.11 | w = 1/[σ2(Fo2) + (0.0241P)2 + 0.2889P] where P = (Fo2 + 2Fc2)/3 |
| 2522 reflections | (Δ/σ)max = 0.001 |
| 145 parameters | Δρmax = 0.41 e Å−3 |
| 0 restraints | Δρmin = −0.44 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | −0.16126 (4) | 0.38319 (4) | 0.41251 (3) | 0.03175 (10) | |
| Cu1 | 0.16354 (5) | 0.33917 (5) | 0.39002 (4) | 0.03347 (12) | |
| N1 | 0.2917 (3) | 0.5093 (3) | 0.2281 (2) | 0.0267 (5) | |
| N2 | 0.0895 (4) | 0.9916 (3) | −0.2237 (2) | 0.0269 (5) | |
| N3 | 0.2398 (4) | 0.9414 (3) | −0.1753 (2) | 0.0282 (5) | |
| N4 | −0.0584 (4) | 0.9032 (4) | −0.1582 (3) | 0.0357 (6) | |
| N5 | −0.0058 (4) | 0.7876 (4) | −0.0601 (3) | 0.0344 (6) | |
| C1 | 0.4652 (4) | 0.5523 (4) | 0.2192 (3) | 0.0346 (7) | |
| H1 | 0.5264 | 0.4971 | 0.2872 | 0.042* | |
| C2 | 0.5561 (5) | 0.6741 (5) | 0.1144 (4) | 0.0380 (8) | |
| H2 | 0.6777 | 0.6985 | 0.1099 | 0.046* | |
| C3 | 0.4632 (4) | 0.7608 (4) | 0.0144 (3) | 0.0325 (7) | |
| H3 | 0.5213 | 0.8450 | −0.0573 | 0.039* | |
| C4 | 0.2039 (4) | 0.5909 (4) | 0.1310 (3) | 0.0251 (6) | |
| H4 | 0.0844 | 0.5603 | 0.1355 | 0.030* | |
| C5 | 0.2839 (4) | 0.7195 (4) | 0.0238 (3) | 0.0244 (6) | |
| C6 | 0.1752 (4) | 0.8133 (4) | −0.0724 (3) | 0.0256 (6) | |
| C8 | 0.0820 (5) | 1.1435 (4) | −0.3331 (3) | 0.0311 (7) | |
| H8A | 0.1252 | 1.2437 | −0.3063 | 0.037* | |
| H8B | −0.0457 | 1.1694 | −0.3395 | 0.037* | |
| C7 | 0.1968 (4) | 0.1148 (4) | 0.5261 (3) | 0.0275 (6) | |
| H7 | 0.1777 | 0.0060 | 0.4956 | 0.033* | |
| C9 | 0.3637 (4) | 0.1859 (4) | 0.4666 (4) | 0.0377 (8) | |
| H9A | 0.4502 | 0.1221 | 0.4010 | 0.045* | |
| H9B | 0.4217 | 0.2348 | 0.5280 | 0.045* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.02503 (17) | 0.03096 (17) | 0.03858 (18) | −0.00123 (12) | −0.01088 (13) | 0.00150 (13) |
| Cu1 | 0.0248 (2) | 0.0368 (2) | 0.0298 (2) | 0.00004 (16) | −0.00487 (16) | 0.01707 (17) |
| N1 | 0.0230 (13) | 0.0300 (13) | 0.0224 (12) | 0.0013 (10) | −0.0036 (10) | 0.0059 (10) |
| N2 | 0.0302 (13) | 0.0260 (12) | 0.0209 (11) | −0.0013 (10) | −0.0060 (10) | 0.0063 (10) |
| N3 | 0.0328 (14) | 0.0269 (13) | 0.0206 (11) | −0.0037 (10) | −0.0046 (10) | 0.0065 (10) |
| N4 | 0.0316 (15) | 0.0371 (15) | 0.0316 (14) | −0.0044 (12) | −0.0035 (12) | 0.0096 (12) |
| N5 | 0.0296 (14) | 0.0376 (15) | 0.0295 (13) | −0.0074 (11) | −0.0056 (11) | 0.0140 (12) |
| C1 | 0.0295 (17) | 0.0415 (18) | 0.0306 (16) | −0.0001 (14) | −0.0104 (13) | 0.0048 (14) |
| C2 | 0.0269 (17) | 0.0453 (19) | 0.0396 (18) | −0.0110 (14) | −0.0080 (14) | 0.0048 (15) |
| C3 | 0.0337 (17) | 0.0300 (16) | 0.0296 (15) | −0.0072 (13) | −0.0048 (13) | 0.0065 (13) |
| C4 | 0.0240 (15) | 0.0265 (14) | 0.0209 (13) | −0.0017 (12) | −0.0028 (11) | 0.0040 (11) |
| C5 | 0.0273 (15) | 0.0246 (14) | 0.0187 (13) | −0.0004 (12) | −0.0033 (11) | 0.0006 (11) |
| C6 | 0.0307 (16) | 0.0242 (14) | 0.0185 (13) | −0.0028 (12) | −0.0020 (12) | 0.0014 (11) |
| C8 | 0.0387 (18) | 0.0250 (15) | 0.0246 (14) | 0.0021 (13) | −0.0069 (13) | 0.0075 (12) |
| C7 | 0.0307 (16) | 0.0217 (14) | 0.0258 (14) | 0.0031 (12) | −0.0078 (12) | 0.0075 (12) |
| C9 | 0.0286 (17) | 0.0375 (18) | 0.0389 (18) | 0.0074 (14) | −0.0084 (14) | 0.0130 (15) |
Geometric parameters (Å, °)
| Br1—Cu1 | 2.3752 (7) | C2—H2 | 0.9300 |
| Cu1—N1 | 2.001 (2) | C3—C5 | 1.377 (4) |
| Cu1—C9 | 2.040 (3) | C3—H3 | 0.9300 |
| Cu1—C7 | 2.057 (3) | C4—C5 | 1.387 (4) |
| N1—C4 | 1.337 (3) | C4—H4 | 0.9300 |
| N1—C1 | 1.341 (4) | C5—C6 | 1.463 (4) |
| N2—N4 | 1.320 (3) | C8—C7i | 1.495 (4) |
| N2—N3 | 1.326 (3) | C8—H8A | 0.9700 |
| N2—C8 | 1.472 (3) | C8—H8B | 0.9700 |
| N3—C6 | 1.330 (4) | C7—C9 | 1.361 (4) |
| N4—N5 | 1.320 (4) | C7—C8ii | 1.495 (4) |
| N5—C6 | 1.353 (4) | C7—H7 | 0.9800 |
| C1—C2 | 1.370 (4) | C9—H9A | 0.9700 |
| C1—H1 | 0.9300 | C9—H9B | 0.9700 |
| C2—C3 | 1.395 (4) | ||
| N1—Cu1—C9 | 107.38 (12) | C5—C4—H4 | 118.7 |
| N1—Cu1—C7 | 145.02 (11) | C3—C5—C4 | 118.6 (3) |
| C9—Cu1—C7 | 38.80 (12) | C3—C5—C6 | 121.4 (3) |
| N1—Cu1—Br1 | 108.50 (7) | C4—C5—C6 | 119.9 (3) |
| C9—Cu1—Br1 | 144.01 (9) | N3—C6—N5 | 112.7 (3) |
| C7—Cu1—Br1 | 105.36 (9) | N3—C6—C5 | 123.6 (3) |
| C4—N1—C1 | 118.2 (3) | N5—C6—C5 | 123.5 (3) |
| C4—N1—Cu1 | 121.3 (2) | N2—C8—C7i | 112.7 (2) |
| C1—N1—Cu1 | 120.37 (19) | N2—C8—H8A | 109.1 |
| N4—N2—N3 | 114.7 (2) | C7i—C8—H8A | 109.1 |
| N4—N2—C8 | 122.0 (3) | N2—C8—H8B | 109.1 |
| N3—N2—C8 | 123.1 (2) | C7i—C8—H8B | 109.1 |
| N2—N3—C6 | 101.0 (2) | H8A—C8—H8B | 107.8 |
| N2—N4—N5 | 105.8 (2) | C9—C7—C8ii | 123.7 (3) |
| N4—N5—C6 | 105.9 (2) | C9—C7—Cu1 | 69.93 (17) |
| N1—C1—C2 | 122.8 (3) | C8ii—C7—Cu1 | 106.21 (19) |
| N1—C1—H1 | 118.6 | C9—C7—H7 | 115.6 |
| C2—C1—H1 | 118.6 | C8ii—C7—H7 | 115.6 |
| C1—C2—C3 | 118.9 (3) | Cu1—C7—H7 | 115.6 |
| C1—C2—H2 | 120.6 | C7—C9—Cu1 | 71.26 (18) |
| C3—C2—H2 | 120.6 | C7—C9—H9A | 116.5 |
| C5—C3—C2 | 118.8 (3) | Cu1—C9—H9A | 116.5 |
| C5—C3—H3 | 120.6 | C7—C9—H9B | 116.5 |
| C2—C3—H3 | 120.6 | Cu1—C9—H9B | 116.5 |
| N1—C4—C5 | 122.7 (3) | H9A—C9—H9B | 113.5 |
| N1—C4—H4 | 118.7 |
Symmetry codes: (i) x, y+1, z−1; (ii) x, y−1, z+1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1···Br1iii | 0.93 | 2.90 | 3.776 (3) | 157. |
| C2—H2···N5iii | 0.93 | 2.62 | 3.415 (4) | 144. |
| C9—H9A···N3iv | 0.97 | 2.88 | 3.800 (4) | 159. |
Symmetry codes: (iii) x+1, y, z; (iv) −x+1, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2335).
References
- Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
- Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev.34, 208–225. [DOI] [PubMed]
- Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed.46, 6852–6856. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808010313/dn2335sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808010313/dn2335Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


