Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1086. doi: 10.1107/S160053680801413X

(E)-3-(2-Chloro­phen­yl)-1-(2,4-dichloro­phen­yl)prop-2-en-1-one

Hoong-Kun Fun a,*, Suchada Chantrapromma b,, P S Patil c, S M Dharmaprakash c
PMCID: PMC2961590  PMID: 21202601

Abstract

In the title chalcone derivative, C15H9Cl3O, the dihedral angle between the 2-chloro­phenyl and 2,4-dichloro­phenyl rings is 41.79 (14)°. Weak C—H⋯O and C—H⋯Cl intra­molecular inter­actions involving the enone unit generate S(5) ring motifs. In the crystal structure, the mol­ecules are arranged in a head-to-tail manner along the a axis. These chains are stacked along the b axis.

Related literature

For related literature on hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun, Chantrapromma et al. (2007); Fun, Patil et al. (2007); Patil, Chantrapromma et al. (2007; Patil, Fun et al. (2007). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Gu et al. (2008); Patil, Dharmaprakash et al. (2007).graphic file with name e-64-o1086-scheme1.jpg

Experimental

Crystal data

  • C15H9Cl3O

  • M r = 311.57

  • Monoclinic, Inline graphic

  • a = 50.177 (2) Å

  • b = 3.8082 (2) Å

  • c = 13.7297 (7) Å

  • β = 95.307 (3)°

  • V = 2612.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100.0 (1) K

  • 0.39 × 0.20 × 0.14 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.775, T max = 0.910

  • 13605 measured reflections

  • 2976 independent reflections

  • 2374 reflections with I > 2σ(I)

  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066

  • wR(F 2) = 0.189

  • S = 1.13

  • 2976 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801413X/is2291sup1.cif

e-64-o1086-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801413X/is2291Isup2.hkl

e-64-o1086-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯Cl3 0.93 2.66 3.042 (5) 106
C9—H9A⋯O1 0.93 2.53 2.841 (6) 100

Acknowledgments

This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Nonlinear optical properties of chalcone derivatives have been widely investigated recently (Agrinskaya et al., 1999; Fun, Chantrapromma et al., 2007; Fun, Patil et al., 2007; Patil, Dharmaprakash et al., 2007; Patil, Chantrapromma et al., 2007; Patil, Fun et al., 2007). These molecules show potential in optical-limiting applications due to their large excited-state absorption cross sections (Gu et al., 2008). In view of the importance of chalcones and the continuation of our non-linear optic materials research the title chalcone derivative, (I), was synthesized and its crystal structure is reported here.

In the structure of the title chalcone derivative (Fig. 1), the enone unit O1/C6–C8, the 2-chlorophenyl and 2,4-dichlorophenyl rings are individually planar, with the maximum deviations of 0.016 (6), -0.017 (6) and 0.022 (5) Å for atom C7, C11 and C2, respectively. The molecule is slightly twisted about the C6–C7 bond as indicated by the torsion angles C1–C6–C7–C8 = 132.8 (5)°, C6–C7–C8–C9 = 171.6 (5)°, C7–C8–C9–C10 = -179.7 (5)° and C8–C9–C10–C15 = -160.7 (5)°. The dihedral angles between the 2-chlorophenyl and 2,4-dichlorophenyl rings is 41.79 (14)°. The least-squares plane through the enone unit makes dihedral angles of 10.3 (3)° and 46.9 (2)° with the 2-chlorophenyl and 2,4-dichlorophenyl rings, respectively. The orientation of the prop-2-en-1-one unit can be indicated by the torsion angle O1–C7–C8–C9 = -11.5 (8)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun, Chantrapromma et al., 2007; Fun, Patil et al., 2007; Patil, Dharmaprakash et al., 2007; Patil, Chantrapromma et al., 2007; Patil, Fun et al., 2007).

In the molecular structure, both weak C9—H9A···O1 and C9—H9A···Cl1 intramolecular interactions (Table 1) generate S(5) ring motifs (Bernstein et al., 1995). In the crystal structure (Fig. 2), the molecules are arranged in a head-to-tail manner along the a-axis. These chains are stacked along the b axis.

Experimental

The title compound was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol) with 2,4-dichloroacetophenones (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring (4 h), the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 6 h. The resulting crude solid was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from acetone by slow evaporation of the solvent at room temperature.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located at 1.90 Å from C13 and the deepest hole is located at 0.93 Å from Cl2.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.

Fig. 2.

Fig. 2.

The crystal packing of (I), viewed along the c axis showing head-to-tail arrangement along the a axis and stacking of the molecules along the b axis.

Crystal data

C15H9Cl3O F000 = 1264
Mr = 311.57 Dx = 1.584 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 2976 reflections
a = 50.177 (2) Å θ = 0.8–27.5º
b = 3.8082 (2) Å µ = 0.69 mm1
c = 13.7297 (7) Å T = 100.0 (1) K
β = 95.307 (3)º Block, colorless
V = 2612.3 (2) Å3 0.39 × 0.20 × 0.14 mm
Z = 8

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer 2976 independent reflections
Radiation source: fine-focus sealed tube 2374 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.054
Detector resolution: 8.33 pixels mm-1 θmax = 27.5º
T = 100.0(1) K θmin = 0.8º
ω scans h = −64→64
Absorption correction: multi-scan(SADABS; Bruker, 2005) k = −4→4
Tmin = 0.775, Tmax = 0.911 l = −17→17
13605 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066 H-atom parameters constrained
wR(F2) = 0.189   w = 1/[σ2(Fo2) + (0.0626P)2 + 28.0963P] where P = (Fo2 + 2Fc2)/3
S = 1.13 (Δ/σ)max = 0.001
2976 reflections Δρmax = 0.52 e Å3
172 parameters Δρmin = −0.58 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.24912 (2) 0.3582 (3) 0.13634 (9) 0.0253 (3)
Cl2 0.32818 (2) 0.9466 (3) −0.04254 (9) 0.0272 (3)
Cl3 0.46557 (2) 0.9477 (4) 0.12885 (9) 0.0320 (3)
O1 0.37362 (7) 0.9696 (11) 0.2294 (3) 0.0353 (9)
C1 0.32520 (9) 0.5622 (13) 0.2282 (4) 0.0240 (10)
H1A 0.3364 0.5366 0.2855 0.029*
C2 0.29887 (9) 0.4535 (13) 0.2272 (4) 0.0247 (10)
H2A 0.2924 0.3562 0.2825 0.030*
C3 0.28239 (8) 0.4941 (13) 0.1413 (4) 0.0232 (10)
C4 0.29124 (9) 0.6481 (12) 0.0592 (3) 0.0225 (10)
H4A 0.2797 0.6825 0.0030 0.027*
C5 0.31790 (9) 0.7503 (13) 0.0626 (4) 0.0237 (10)
C6 0.33539 (9) 0.7072 (13) 0.1473 (3) 0.0226 (10)
C7 0.36458 (9) 0.8125 (15) 0.1559 (4) 0.0292 (11)
C8 0.38100 (10) 0.7060 (15) 0.0778 (4) 0.0312 (11)
H8A 0.3740 0.5518 0.0295 0.037*
C9 0.40609 (9) 0.8285 (15) 0.0751 (4) 0.0310 (11)
H9A 0.4126 0.9814 0.1245 0.037*
C10 0.42374 (10) 0.7390 (14) 0.0006 (4) 0.0298 (11)
C11 0.41423 (10) 0.6012 (15) −0.0914 (4) 0.0346 (12)
H11A 0.3960 0.5603 −0.1046 0.042*
C12 0.43090 (11) 0.5256 (15) −0.1619 (4) 0.0357 (12)
H12A 0.4239 0.4393 −0.2224 0.043*
C13 0.45816 (11) 0.5780 (15) −0.1430 (4) 0.0357 (12)
H13A 0.4695 0.5252 −0.1907 0.043*
C14 0.46862 (9) 0.7084 (14) −0.0535 (4) 0.0298 (11)
H14A 0.4870 0.7433 −0.0406 0.036*
C15 0.45143 (9) 0.7860 (13) 0.0163 (4) 0.0263 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0192 (5) 0.0235 (6) 0.0333 (6) −0.0020 (4) 0.0024 (4) 0.0004 (5)
Cl2 0.0291 (6) 0.0242 (6) 0.0288 (6) −0.0030 (5) 0.0058 (4) 0.0011 (5)
Cl3 0.0250 (6) 0.0343 (7) 0.0363 (7) −0.0035 (5) 0.0016 (5) 0.0009 (6)
O1 0.0274 (17) 0.042 (2) 0.036 (2) −0.0053 (16) −0.0011 (14) −0.0058 (18)
C1 0.024 (2) 0.021 (2) 0.027 (2) 0.0057 (18) −0.0006 (17) −0.004 (2)
C2 0.024 (2) 0.019 (2) 0.032 (3) 0.0036 (18) 0.0049 (18) 0.000 (2)
C3 0.0156 (19) 0.024 (2) 0.031 (2) −0.0004 (17) 0.0051 (17) −0.004 (2)
C4 0.024 (2) 0.017 (2) 0.025 (2) 0.0020 (17) −0.0019 (17) −0.0009 (19)
C5 0.025 (2) 0.018 (2) 0.028 (2) 0.0008 (18) 0.0052 (18) 0.000 (2)
C6 0.021 (2) 0.021 (2) 0.026 (2) 0.0021 (18) 0.0032 (17) 0.000 (2)
C7 0.026 (2) 0.032 (3) 0.029 (3) −0.001 (2) 0.0028 (19) 0.002 (2)
C8 0.026 (2) 0.032 (3) 0.035 (3) 0.001 (2) 0.001 (2) 0.000 (2)
C9 0.027 (2) 0.033 (3) 0.033 (3) 0.001 (2) 0.002 (2) 0.002 (2)
C10 0.027 (2) 0.028 (3) 0.035 (3) −0.001 (2) 0.004 (2) 0.008 (2)
C11 0.032 (3) 0.031 (3) 0.041 (3) −0.005 (2) 0.000 (2) 0.006 (2)
C12 0.042 (3) 0.026 (3) 0.038 (3) 0.000 (2) −0.003 (2) −0.001 (2)
C13 0.034 (3) 0.031 (3) 0.043 (3) 0.006 (2) 0.007 (2) −0.002 (3)
C14 0.022 (2) 0.028 (3) 0.040 (3) 0.002 (2) 0.0045 (19) 0.002 (2)
C15 0.025 (2) 0.019 (2) 0.035 (3) −0.0010 (19) 0.0021 (19) 0.006 (2)

Geometric parameters (Å, °)

Cl1—C3 1.743 (4) C8—C9 1.347 (7)
Cl2—C5 1.746 (5) C8—H8A 0.9300
Cl3—C15 1.751 (5) C9—C10 1.454 (7)
O1—C7 1.224 (6) C9—H9A 0.9300
C1—C6 1.380 (7) C10—C15 1.398 (6)
C1—C2 1.383 (6) C10—C11 1.410 (8)
C1—H1A 0.9300 C11—C12 1.367 (8)
C2—C3 1.385 (7) C11—H11A 0.9300
C2—H2A 0.9300 C12—C13 1.383 (7)
C3—C4 1.380 (7) C12—H12A 0.9300
C4—C5 1.390 (6) C13—C14 1.382 (8)
C4—H4A 0.9300 C13—H13A 0.9300
C5—C6 1.400 (6) C14—C15 1.380 (7)
C6—C7 1.512 (6) C14—H14A 0.9300
C7—C8 1.468 (7)
C6—C1—C2 122.4 (4) C7—C8—H8A 119.6
C6—C1—H1A 118.8 C8—C9—C10 124.7 (5)
C2—C1—H1A 118.8 C8—C9—H9A 117.6
C1—C2—C3 118.0 (4) C10—C9—H9A 117.6
C1—C2—H2A 121.0 C15—C10—C11 115.8 (5)
C3—C2—H2A 121.0 C15—C10—C9 121.5 (5)
C4—C3—C2 122.1 (4) C11—C10—C9 122.7 (5)
C4—C3—Cl1 118.3 (4) C12—C11—C10 122.3 (5)
C2—C3—Cl1 119.6 (4) C12—C11—H11A 118.8
C3—C4—C5 118.2 (4) C10—C11—H11A 118.8
C3—C4—H4A 120.9 C11—C12—C13 119.7 (5)
C5—C4—H4A 120.9 C11—C12—H12A 120.2
C4—C5—C6 121.5 (4) C13—C12—H12A 120.2
C4—C5—Cl2 116.7 (4) C14—C13—C12 120.5 (5)
C6—C5—Cl2 121.8 (3) C14—C13—H13A 119.8
C1—C6—C5 117.7 (4) C12—C13—H13A 119.8
C1—C6—C7 118.2 (4) C15—C14—C13 118.9 (5)
C5—C6—C7 124.1 (4) C15—C14—H14A 120.5
O1—C7—C8 123.2 (4) C13—C14—H14A 120.5
O1—C7—C6 118.4 (4) C14—C15—C10 122.8 (5)
C8—C7—C6 118.4 (4) C14—C15—Cl3 117.4 (4)
C9—C8—C7 120.9 (5) C10—C15—Cl3 119.8 (4)
C9—C8—H8A 119.6
C6—C1—C2—C3 −0.1 (7) O1—C7—C8—C9 −11.5 (8)
C1—C2—C3—C4 −2.1 (7) C6—C7—C8—C9 171.6 (5)
C1—C2—C3—Cl1 179.6 (4) C7—C8—C9—C10 −179.7 (5)
C2—C3—C4—C5 2.9 (7) C8—C9—C10—C15 −160.7 (5)
Cl1—C3—C4—C5 −178.8 (4) C8—C9—C10—C11 19.5 (9)
C3—C4—C5—C6 −1.4 (7) C15—C10—C11—C12 −1.5 (8)
C3—C4—C5—Cl2 −179.6 (4) C9—C10—C11—C12 178.4 (5)
C2—C1—C6—C5 1.4 (7) C10—C11—C12—C13 1.3 (9)
C2—C1—C6—C7 −179.1 (5) C11—C12—C13—C14 −0.4 (9)
C4—C5—C6—C1 −0.6 (7) C12—C13—C14—C15 −0.1 (8)
Cl2—C5—C6—C1 177.4 (4) C13—C14—C15—C10 −0.1 (8)
C4—C5—C6—C7 180.0 (5) C13—C14—C15—Cl3 179.6 (4)
Cl2—C5—C6—C7 −2.0 (7) C11—C10—C15—C14 0.9 (8)
C1—C6—C7—O1 −44.2 (7) C9—C10—C15—C14 −179.0 (5)
C5—C6—C7—O1 135.2 (5) C11—C10—C15—Cl3 −178.8 (4)
C1—C6—C7—C8 132.8 (5) C9—C10—C15—Cl3 1.3 (7)
C5—C6—C7—C8 −47.8 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···Cl3 0.93 2.66 3.042 (5) 106
C9—H9A···O1 0.93 2.53 2.841 (6) 100

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2291).

References

  1. Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fun, H.-K., Chantrapromma, S., Patil, P. S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2724–o2725.
  6. Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.
  7. Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett.92, 091118–091120.
  8. Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o1738–o1740.
  9. Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007). Acta Cryst. E63, o2497–o2498.
  10. Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801413X/is2291sup1.cif

e-64-o1086-sup1.cif (17.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801413X/is2291Isup2.hkl

e-64-o1086-Isup2.hkl (146.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES