Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 7;64(Pt 6):o1012. doi: 10.1107/S1600536808012567

2-O-Benzhydryl-3,4-(S)-O-benzyl­idene-d-xylono-1,4-lactone

Sarah F Jenkinson a,*, Sebastian D Rule a, Kathrine V Booth a, George W J Fleet a, David J Watkin b, Sigthor Petursson c
PMCID: PMC2961596  PMID: 21202537

Abstract

X-ray crystallography unequivocally shows that protection of the free hydroxyl group of 3,5-O-benzyl­idene-d-xylono-1,4-lactone with diphenyl­diazo­methane proceeded smoothly to give the title compound, C25H22O5, with no accompanying epimerization. Unlike the analogously protected lyxono lactone, the isomeric xylono lactone has two mol­ecules present in the asymmetric unit (Z′ = 2). The 5-ring lactones adopt envelope conformations and the 6-ring ketals adopt chair conformations.

Related literature

For related literature, see: Collins & Ferrier (1995); Draths et al. (1992); Jackson et al. (1982); Petursson & Webber (1982); Petursson et al. (2007); Petursson (2001, 2003); Best et al. (2008); Jenkinson et al. (2008); Görbitz (1999).graphic file with name e-64-o1012-scheme1.jpg

Experimental

Crystal data

  • C25H22O5

  • M r = 402.45

  • Monoclinic, Inline graphic

  • a = 14.8159 (3) Å

  • b = 9.1959 (2) Å

  • c = 15.0797 (2) Å

  • β = 93.7245 (12)°

  • V = 2050.20 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.80 × 0.30 × 0.10 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.55, T max = 0.99

  • 25081 measured reflections

  • 4938 independent reflections

  • 3950 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.101

  • S = 0.89

  • 4938 reflections

  • 542 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012567/lh2623sup1.cif

e-64-o1012-sup1.cif (29.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012567/lh2623Isup2.hkl

e-64-o1012-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Carbohydrates provide excellent starting materials for the synthesis of small chiral molecules (Collins & Ferrier, 1995). They are relatively inexpensive and provide an almost boundless pool of chiral building blocks (Draths et al., 1992). Much of their synthetic utility is however dependent on developing successful protecting group strategies.

Diazodiphenylmethane has been found to be a useful protecting group in the synthesis of methyl 2,3,6-tri-O-methyl-α-D-glucopyranoside and kojibiose octa-acetate (Jackson et al., 1982); monoalkylations of vicinal diols have been achieved with this reagent and other diaryldiazoalkanes with high regioselectivities (Petursson & Webber, 1982; Petursson et al., 2007; Petursson, 2003; Petursson, 2001). This is of particular interest for the protection of base sensitive sugar lactones as the reaction is carried out under neutral conditions (Best et al. 2008; Jenkinson et al. 2008).

The utility of the benzhydryl group as a protecting group in carbohydrate chemistry has here been demonstrated with the reaction of 3,5-O-benzylidene-D-xylono-1,4-lactone 1 with diphenyldiazomethane (Fig. 1). No epimerization at C2 was observed (Fig. 2).

Unlike the analogously protected lyxono lactone (Jenkinson et al., 2008), the asymmetric unit of the isomeric xylono lactone contains two crystallographically distinct molecules which are related by a pseudo 2-fold axis of symmetry. These are similar in geometry with the exception of two of the phenyl rings which sit at approximately 90° to each other (Fig. 3). When the core 20 atoms, of the carbohydrate backbone and 1 phenyl group, are mapped there is good overlap- r.m.s. deviations: posn 0.1139 Å, bond 0.0104 Å, torsion 2.5205°.

The crystal packing shows alternating layers of molecules in the ac plane (Fig. 4). The 5-ring lactones adopt envelope conformations with C2 or C102 out of the plane. The 6-ring ketals adopt chair conformations. There is no classic hydrogen-bonding.

Experimental

The title lactone was recrystallized from a 1:1 mixture of ethyl acetate and cyclohexane: m.p. 395–397 K; [α]D23 +129.1 (c, 1.02 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.80) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic Scheme.

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius. There are two molecules in the asymmetric repeating unit.

Fig. 3.

Fig. 3.

Overlay of the two molecules in the asymmetric unit.

Fig. 4.

Fig. 4.

Packing diagram for the molecule projected along the b-axis.

Crystal data

C25H22O5 F000 = 848
Mr = 402.45 Dx = 1.304 Mg m3
Monoclinic, P21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4834 reflections
a = 14.8159 (3) Å θ = 5–27º
b = 9.1959 (2) Å µ = 0.09 mm1
c = 15.0797 (2) Å T = 150 K
β = 93.7245 (12)º Plate, colourless
V = 2050.20 (7) Å3 0.80 × 0.30 × 0.10 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer 3950 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 150 K θmax = 27.5º
ω scans θmin = 5.2º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −19→19
Tmin = 0.55, Tmax = 0.99 k = −11→11
25081 measured reflections l = −19→19
4938 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034   Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 16.9 24.9 12.6 3.46
wR(F2) = 0.101 (Δ/σ)max = 0.0003
S = 0.89 Δρmax = 0.25 e Å3
4938 reflections Δρmin = −0.27 e Å3
542 parameters Extinction correction: Larson (1970), Equation 22
1 restraint Extinction coefficient: 600 (50)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.44166 (10) 0.5327 (2) 0.31715 (10) 0.0244
C2 0.40499 (15) 0.5336 (3) 0.22694 (15) 0.0242
C3 0.30725 (16) 0.4866 (3) 0.23203 (15) 0.0254
O4 0.25857 (10) 0.5219 (2) 0.15093 (10) 0.0265
C5 0.16129 (15) 0.5192 (3) 0.15751 (16) 0.0257
C6 0.13142 (16) 0.6490 (3) 0.21052 (15) 0.0252
C7 0.17991 (18) 0.7781 (3) 0.21395 (18) 0.0330
C8 0.1517 (2) 0.8947 (3) 0.26476 (19) 0.0403
C9 0.0760 (2) 0.8806 (3) 0.31222 (18) 0.0432
C10 0.0264 (2) 0.7539 (4) 0.30826 (19) 0.0437
C11 0.05367 (19) 0.6375 (3) 0.25762 (17) 0.0335
C12 0.12135 (15) 0.5140 (3) 0.06274 (15) 0.0255
C13 0.15139 (19) 0.6107 (3) 0.00038 (17) 0.0339
C14 0.1185 (2) 0.6028 (4) −0.08784 (18) 0.0429
C15 0.0551 (2) 0.4987 (4) −0.11333 (19) 0.0486
C16 0.02472 (19) 0.4030 (4) −0.0519 (2) 0.0479
C17 0.05739 (17) 0.4106 (4) 0.03651 (19) 0.0368
C18 0.31556 (18) 0.3212 (3) 0.23435 (18) 0.0323
O19 0.26098 (14) 0.2338 (2) 0.25627 (16) 0.0478
O20 0.39494 (13) 0.2813 (2) 0.20131 (13) 0.0344
C21 0.44429 (17) 0.4094 (3) 0.17435 (16) 0.0296
C22 0.54422 (17) 0.3886 (3) 0.19447 (16) 0.0335
O23 0.56825 (11) 0.3965 (2) 0.28758 (11) 0.0301
C24 0.53776 (15) 0.5268 (3) 0.32352 (15) 0.0255
C25 0.56837 (16) 0.5320 (3) 0.42104 (16) 0.0277
C26 0.53029 (17) 0.6335 (3) 0.47592 (17) 0.0318
C27 0.5559 (2) 0.6362 (4) 0.56635 (19) 0.0417
C28 0.6204 (2) 0.5396 (4) 0.6014 (2) 0.0479
C29 0.6607 (2) 0.4425 (4) 0.5464 (2) 0.0479
C30 0.63432 (19) 0.4375 (3) 0.45597 (19) 0.0359
O101 0.17514 (11) 0.3628 (2) 0.56763 (10) 0.0280
C102 0.26545 (16) 0.3497 (3) 0.60615 (15) 0.0265
C103 0.26225 (16) 0.3956 (3) 0.70212 (16) 0.0266
O104 0.34196 (11) 0.3412 (2) 0.74916 (10) 0.0274
C105 0.33862 (16) 0.3463 (3) 0.84483 (15) 0.0254
C106 0.27885 (16) 0.2264 (3) 0.87746 (17) 0.0275
C107 0.25628 (19) 0.1047 (3) 0.82618 (19) 0.0368
C108 0.2043 (2) −0.0056 (4) 0.8592 (2) 0.0473
C109 0.17436 (19) 0.0054 (4) 0.9435 (3) 0.0506
C110 0.1966 (2) 0.1261 (4) 0.9956 (2) 0.0512
C111 0.2483 (2) 0.2372 (4) 0.9627 (2) 0.0394
C112 0.43660 (16) 0.3392 (3) 0.88150 (15) 0.0254
C113 0.49799 (18) 0.4396 (3) 0.85136 (18) 0.0320
C114 0.58750 (19) 0.4422 (3) 0.8863 (2) 0.0383
C115 0.61626 (18) 0.3427 (3) 0.95059 (18) 0.0348
C116 0.55682 (18) 0.2406 (3) 0.97998 (16) 0.0318
C117 0.46694 (17) 0.2387 (3) 0.94582 (15) 0.0276
C118 0.27224 (17) 0.5609 (3) 0.69587 (17) 0.0307
O119 0.25584 (16) 0.6510 (3) 0.75019 (14) 0.0446
O120 0.30885 (13) 0.5960 (2) 0.61933 (12) 0.0333
C121 0.32735 (16) 0.4648 (3) 0.56966 (16) 0.0299
C122 0.30971 (17) 0.4926 (4) 0.47132 (17) 0.0357
O123 0.21497 (11) 0.4979 (2) 0.44632 (11) 0.0315
C124 0.17243 (16) 0.3695 (3) 0.47308 (15) 0.0280
C125 0.07503 (16) 0.3717 (3) 0.43830 (16) 0.0286
C126 0.01418 (18) 0.4674 (3) 0.47230 (17) 0.0354
C127 −0.07582 (19) 0.4661 (4) 0.44074 (19) 0.0426
C128 −0.10512 (19) 0.3684 (4) 0.3750 (2) 0.0417
C129 −0.0444 (2) 0.2749 (4) 0.3393 (2) 0.0412
C130 0.0462 (2) 0.2761 (3) 0.37099 (18) 0.0344
H21 0.4102 0.6308 0.1980 0.0310*
H31 0.2815 0.5292 0.2838 0.0300*
H51 0.1461 0.4285 0.1912 0.0293*
H71 0.2332 0.7897 0.1793 0.0378*
H81 0.1854 0.9828 0.2657 0.0498*
H91 0.0574 0.9586 0.3462 0.0522*
H101 −0.0270 0.7456 0.3417 0.0499*
H111 0.0193 0.5507 0.2559 0.0398*
H131 0.1944 0.6831 0.0155 0.0428*
H141 0.1417 0.6660 −0.1305 0.0511*
H151 0.0293 0.4918 −0.1722 0.0598*
H161 −0.0195 0.3290 −0.0668 0.0570*
H171 0.0384 0.3446 0.0768 0.0465*
H211 0.4312 0.4257 0.1074 0.0355*
H221 0.5780 0.4629 0.1587 0.0427*
H222 0.5617 0.2896 0.1766 0.0439*
H241 0.5627 0.6105 0.2909 0.0328*
H261 0.4846 0.7013 0.4543 0.0393*
H271 0.5298 0.7065 0.6043 0.0510*
H281 0.6372 0.5419 0.6640 0.0566*
H291 0.7087 0.3765 0.5704 0.0512*
H301 0.6622 0.3686 0.4199 0.0430*
H1021 0.2909 0.2513 0.5939 0.0322*
H1031 0.2066 0.3671 0.7308 0.0308*
H1051 0.3131 0.4449 0.8589 0.0297*
H1071 0.2755 0.0977 0.7683 0.0447*
H1081 0.1886 −0.0904 0.8241 0.0582*
H1091 0.1414 −0.0692 0.9676 0.0609*
H1101 0.1777 0.1334 1.0531 0.0637*
H1111 0.2619 0.3211 0.9967 0.0452*
H1131 0.4790 0.5064 0.8020 0.0373*
H1141 0.6288 0.5114 0.8631 0.0459*
H1151 0.6769 0.3437 0.9745 0.0399*
H1161 0.5788 0.1694 1.0226 0.0391*
H1171 0.4223 0.1678 0.9652 0.0343*
H1211 0.3914 0.4381 0.5851 0.0389*
H1221 0.3378 0.5873 0.4563 0.0426*
H1222 0.3394 0.4138 0.4383 0.0433*
H1241 0.2031 0.2834 0.4506 0.0363*
H1261 0.0340 0.5326 0.5187 0.0406*
H1271 −0.1184 0.5305 0.4660 0.0513*
H1281 −0.1677 0.3670 0.3552 0.0470*
H1291 −0.0649 0.2101 0.2929 0.0471*
H1301 0.0895 0.2105 0.3457 0.0399*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0232 (7) 0.0288 (9) 0.0210 (7) −0.0002 (7) 0.0005 (6) −0.0019 (7)
C2 0.0265 (11) 0.0255 (12) 0.0202 (10) 0.0009 (9) −0.0007 (8) 0.0009 (9)
C3 0.0275 (11) 0.0277 (13) 0.0209 (10) −0.0006 (10) −0.0001 (8) 0.0048 (10)
O4 0.0243 (8) 0.0340 (10) 0.0209 (7) 0.0030 (7) −0.0011 (6) 0.0044 (7)
C5 0.0245 (11) 0.0251 (12) 0.0276 (11) −0.0001 (10) 0.0017 (8) 0.0027 (10)
C6 0.0300 (11) 0.0240 (11) 0.0211 (10) 0.0031 (10) −0.0022 (8) 0.0024 (9)
C7 0.0352 (13) 0.0288 (13) 0.0346 (13) −0.0016 (11) −0.0004 (10) −0.0027 (11)
C8 0.0518 (16) 0.0289 (14) 0.0387 (14) −0.0017 (13) −0.0081 (12) −0.0037 (12)
C9 0.0659 (19) 0.0334 (16) 0.0298 (13) 0.0140 (15) 0.0001 (12) −0.0040 (12)
C10 0.0570 (18) 0.0398 (17) 0.0361 (15) 0.0146 (14) 0.0169 (13) 0.0055 (13)
C11 0.0390 (13) 0.0283 (13) 0.0341 (13) 0.0044 (11) 0.0094 (10) 0.0046 (11)
C12 0.0239 (10) 0.0255 (12) 0.0269 (11) 0.0055 (9) −0.0005 (8) −0.0051 (10)
C13 0.0413 (14) 0.0298 (14) 0.0296 (12) −0.0048 (11) −0.0048 (10) −0.0012 (11)
C14 0.0528 (17) 0.0505 (18) 0.0244 (13) 0.0027 (15) −0.0041 (11) 0.0001 (13)
C15 0.0420 (15) 0.072 (2) 0.0303 (13) 0.0034 (16) −0.0085 (11) −0.0144 (16)
C16 0.0305 (13) 0.066 (2) 0.0468 (16) −0.0103 (15) −0.0029 (11) −0.0195 (17)
C17 0.0269 (12) 0.0416 (16) 0.0422 (14) −0.0072 (12) 0.0034 (10) −0.0072 (13)
C18 0.0321 (13) 0.0315 (14) 0.0318 (13) −0.0024 (11) −0.0098 (10) 0.0067 (11)
O19 0.0394 (11) 0.0384 (12) 0.0638 (14) −0.0101 (10) −0.0106 (10) 0.0201 (11)
O20 0.0399 (10) 0.0248 (9) 0.0376 (10) 0.0003 (8) −0.0035 (8) −0.0012 (8)
C21 0.0357 (12) 0.0308 (13) 0.0223 (10) 0.0026 (11) 0.0027 (9) −0.0005 (10)
C22 0.0373 (13) 0.0370 (14) 0.0267 (12) 0.0071 (12) 0.0052 (10) −0.0038 (11)
O23 0.0300 (8) 0.0340 (10) 0.0264 (8) 0.0074 (8) 0.0021 (6) −0.0025 (8)
C24 0.0224 (10) 0.0262 (12) 0.0282 (11) 0.0001 (10) 0.0032 (8) −0.0014 (10)
C25 0.0245 (11) 0.0280 (12) 0.0303 (12) −0.0073 (10) −0.0004 (9) −0.0015 (10)
C26 0.0289 (12) 0.0327 (14) 0.0336 (13) −0.0030 (11) 0.0009 (9) −0.0074 (11)
C27 0.0428 (15) 0.0469 (18) 0.0350 (14) −0.0127 (14) −0.0017 (11) −0.0100 (14)
C28 0.0585 (19) 0.0486 (18) 0.0344 (14) −0.0137 (16) −0.0135 (13) −0.0068 (14)
C29 0.0542 (18) 0.0407 (18) 0.0456 (17) 0.0004 (15) −0.0219 (14) −0.0023 (14)
C30 0.0372 (13) 0.0318 (14) 0.0373 (14) 0.0023 (11) −0.0080 (11) −0.0043 (12)
O101 0.0258 (8) 0.0354 (10) 0.0223 (8) −0.0028 (7) −0.0020 (6) 0.0045 (7)
C102 0.0243 (11) 0.0282 (12) 0.0268 (11) 0.0022 (10) −0.0011 (8) 0.0006 (10)
C103 0.0230 (10) 0.0315 (13) 0.0249 (11) 0.0045 (10) 0.0002 (8) 0.0039 (10)
O104 0.0251 (8) 0.0349 (10) 0.0219 (8) 0.0045 (7) −0.0009 (6) 0.0021 (7)
C105 0.0276 (11) 0.0253 (12) 0.0234 (10) 0.0012 (10) 0.0017 (8) 0.0004 (10)
C106 0.0224 (11) 0.0293 (13) 0.0309 (12) 0.0040 (10) 0.0017 (9) 0.0040 (10)
C107 0.0379 (14) 0.0348 (15) 0.0367 (14) −0.0038 (12) −0.0050 (11) 0.0054 (12)
C108 0.0436 (16) 0.0373 (17) 0.0591 (19) −0.0105 (14) −0.0108 (13) 0.0091 (15)
C109 0.0315 (14) 0.0453 (19) 0.075 (2) 0.0004 (13) 0.0064 (14) 0.0245 (18)
C110 0.0442 (17) 0.052 (2) 0.060 (2) 0.0125 (16) 0.0272 (15) 0.0164 (17)
C111 0.0377 (14) 0.0385 (16) 0.0435 (15) 0.0096 (13) 0.0152 (12) 0.0036 (13)
C112 0.0268 (11) 0.0262 (12) 0.0230 (10) 0.0003 (10) 0.0003 (8) −0.0033 (9)
C113 0.0333 (12) 0.0267 (13) 0.0356 (13) −0.0018 (10) −0.0012 (10) 0.0016 (11)
C114 0.0342 (14) 0.0329 (15) 0.0473 (15) −0.0060 (12) −0.0002 (11) −0.0029 (13)
C115 0.0284 (12) 0.0387 (15) 0.0363 (13) 0.0009 (11) −0.0051 (10) −0.0111 (12)
C116 0.0329 (13) 0.0377 (15) 0.0239 (11) 0.0081 (11) −0.0051 (9) −0.0038 (11)
C117 0.0307 (12) 0.0303 (13) 0.0215 (10) 0.0026 (10) 0.0008 (9) −0.0010 (10)
C118 0.0294 (12) 0.0332 (14) 0.0291 (12) 0.0039 (10) −0.0005 (9) 0.0015 (11)
O119 0.0597 (13) 0.0362 (11) 0.0382 (10) 0.0110 (10) 0.0052 (9) −0.0041 (10)
O120 0.0381 (10) 0.0317 (10) 0.0304 (9) −0.0055 (8) 0.0030 (7) 0.0035 (8)
C121 0.0255 (11) 0.0375 (14) 0.0268 (11) −0.0026 (11) 0.0028 (9) −0.0006 (11)
C122 0.0268 (12) 0.0527 (18) 0.0278 (12) −0.0056 (12) 0.0041 (9) 0.0032 (13)
O123 0.0274 (8) 0.0407 (11) 0.0264 (8) −0.0048 (8) 0.0019 (6) 0.0068 (8)
C124 0.0308 (11) 0.0300 (13) 0.0231 (11) −0.0002 (10) 0.0019 (9) 0.0024 (10)
C125 0.0297 (12) 0.0313 (13) 0.0247 (11) −0.0025 (10) 0.0010 (9) 0.0040 (10)
C126 0.0334 (13) 0.0430 (16) 0.0294 (12) 0.0014 (12) −0.0004 (10) −0.0060 (12)
C127 0.0342 (13) 0.0577 (19) 0.0359 (14) 0.0035 (14) 0.0024 (11) 0.0010 (14)
C128 0.0325 (13) 0.0510 (19) 0.0407 (14) −0.0064 (13) −0.0058 (11) 0.0092 (14)
C129 0.0456 (16) 0.0385 (16) 0.0380 (14) −0.0092 (13) −0.0091 (12) −0.0012 (13)
C130 0.0420 (14) 0.0284 (13) 0.0319 (13) −0.0018 (12) −0.0050 (11) −0.0005 (11)

Geometric parameters (Å, °)

O1—C2 1.432 (3) O101—C102 1.429 (3)
O1—C24 1.422 (3) O101—C124 1.425 (3)
C2—C3 1.518 (3) C102—C103 1.511 (3)
C2—C21 1.527 (4) C102—C121 1.526 (4)
C2—H21 1.000 C102—H1021 1.002
C3—O4 1.416 (3) C103—O104 1.428 (3)
C3—C18 1.526 (4) C103—C118 1.531 (4)
C3—H31 0.973 C103—H1031 0.991
O4—C5 1.451 (3) O104—C105 1.448 (3)
C5—C6 1.518 (3) C105—C106 1.516 (3)
C5—C12 1.512 (3) C105—C112 1.521 (3)
C5—H51 1.009 C105—H1051 1.011
C6—C7 1.387 (4) C106—C107 1.388 (4)
C6—C11 1.396 (3) C106—C111 1.393 (4)
C7—C8 1.398 (4) C107—C108 1.385 (4)
C7—H71 0.980 C107—H1071 0.938
C8—C9 1.374 (4) C108—C109 1.377 (5)
C8—H81 0.952 C108—H1081 0.963
C9—C10 1.377 (5) C109—C110 1.387 (5)
C9—H91 0.933 C109—H1091 0.930
C10—C11 1.390 (4) C110—C111 1.388 (5)
C10—H101 0.969 C110—H1101 0.932
C11—H111 0.947 C111—H1111 0.941
C12—C13 1.388 (4) C112—C113 1.393 (4)
C12—C17 1.382 (4) C112—C117 1.393 (3)
C13—C14 1.389 (4) C113—C114 1.395 (4)
C13—H131 0.939 C113—H1131 0.991
C14—C15 1.378 (5) C114—C115 1.381 (4)
C14—H141 0.948 C114—H1141 0.964
C15—C16 1.374 (5) C115—C116 1.380 (4)
C15—H151 0.946 C115—H1151 0.946
C16—C17 1.390 (4) C116—C117 1.396 (3)
C16—H161 0.961 C116—H1161 0.960
C17—H171 0.916 C117—H1171 0.986
C18—O19 1.202 (3) C118—O119 1.201 (3)
C18—O20 1.357 (3) C118—O120 1.346 (3)
O20—C21 1.458 (3) O120—C121 1.456 (3)
C21—C22 1.504 (4) C121—C122 1.511 (3)
C21—H211 1.026 C121—H1211 0.994
C22—O23 1.428 (3) C122—O123 1.430 (3)
C22—H221 1.021 C122—H1221 0.998
C22—H222 0.989 C122—H1222 0.998
O23—C24 1.402 (3) O123—C124 1.409 (3)
C24—C25 1.511 (3) C124—C125 1.503 (3)
C24—H241 0.997 C124—H1241 0.984
C25—C26 1.392 (4) C125—C126 1.382 (4)
C25—C30 1.385 (4) C125—C130 1.389 (4)
C26—C27 1.392 (4) C126—C127 1.387 (4)
C26—H261 0.961 C126—H1261 0.953
C27—C28 1.385 (5) C127—C128 1.386 (5)
C27—H271 0.961 C127—H1271 0.962
C28—C29 1.380 (5) C128—C129 1.379 (5)
C28—H281 0.962 C128—H1281 0.955
C29—C30 1.394 (4) C129—C130 1.394 (4)
C29—H291 0.986 C129—H1291 0.954
C30—H301 0.948 C130—H1301 0.977
C2—O1—C24 112.39 (17) C102—O101—C124 112.03 (17)
O1—C2—C3 104.75 (18) O101—C102—C103 106.20 (18)
O1—C2—C21 110.80 (19) O101—C102—C121 111.3 (2)
C3—C2—C21 102.2 (2) C103—C102—C121 102.0 (2)
O1—C2—H21 112.6 O101—C102—H1021 110.8
C3—C2—H21 112.2 C103—C102—H1021 117.7
C21—C2—H21 113.5 C121—C102—H1021 108.5
C2—C3—O4 108.98 (18) C102—C103—O104 107.53 (19)
C2—C3—C18 102.1 (2) C102—C103—C118 102.1 (2)
O4—C3—C18 106.5 (2) O104—C103—C118 107.4 (2)
C2—C3—H31 110.6 C102—C103—H1031 115.0
O4—C3—H31 113.3 O104—C103—H1031 112.1
C18—C3—H31 114.7 C118—C103—H1031 112.1
C3—O4—C5 112.91 (17) C103—O104—C105 113.76 (17)
O4—C5—C6 110.32 (19) O104—C105—C106 111.0 (2)
O4—C5—C12 105.39 (18) O104—C105—C112 105.51 (17)
C6—C5—C12 114.4 (2) C106—C105—C112 114.5 (2)
O4—C5—H51 107.6 O104—C105—H1051 106.0
C6—C5—H51 107.6 C106—C105—H1051 110.5
C12—C5—H51 111.3 C112—C105—H1051 108.9
C5—C6—C7 121.7 (2) C105—C106—C107 122.0 (2)
C5—C6—C11 119.1 (2) C105—C106—C111 118.6 (2)
C7—C6—C11 119.2 (2) C107—C106—C111 119.4 (3)
C6—C7—C8 120.3 (3) C106—C107—C108 120.6 (3)
C6—C7—H71 120.5 C106—C107—H1071 119.8
C8—C7—H71 119.2 C108—C107—H1071 119.6
C7—C8—C9 119.7 (3) C107—C108—C109 119.9 (3)
C7—C8—H81 119.1 C107—C108—H1081 121.1
C9—C8—H81 121.2 C109—C108—H1081 119.0
C8—C9—C10 120.6 (3) C108—C109—C110 120.1 (3)
C8—C9—H91 119.5 C108—C109—H1091 121.1
C10—C9—H91 119.9 C110—C109—H1091 118.7
C9—C10—C11 120.1 (3) C109—C110—C111 120.2 (3)
C9—C10—H101 119.7 C109—C110—H1101 120.7
C11—C10—H101 120.1 C111—C110—H1101 119.1
C6—C11—C10 120.0 (3) C106—C111—C110 119.8 (3)
C6—C11—H111 120.7 C106—C111—H1111 119.4
C10—C11—H111 119.3 C110—C111—H1111 120.8
C5—C12—C13 119.8 (2) C105—C112—C113 118.8 (2)
C5—C12—C17 120.8 (2) C105—C112—C117 122.6 (2)
C13—C12—C17 119.4 (2) C113—C112—C117 118.6 (2)
C12—C13—C14 120.5 (3) C112—C113—C114 120.9 (3)
C12—C13—H131 122.2 C112—C113—H1131 119.8
C14—C13—H131 117.3 C114—C113—H1131 119.2
C13—C14—C15 119.6 (3) C113—C114—C115 119.7 (3)
C13—C14—H141 119.9 C113—C114—H1141 119.0
C15—C14—H141 120.5 C115—C114—H1141 121.2
C14—C15—C16 120.3 (3) C114—C115—C116 120.1 (2)
C14—C15—H151 122.4 C114—C115—H1151 120.3
C16—C15—H151 117.4 C116—C115—H1151 119.6
C15—C16—C17 120.4 (3) C115—C116—C117 120.2 (2)
C15—C16—H161 122.9 C115—C116—H1161 118.9
C17—C16—H161 116.7 C117—C116—H1161 120.8
C16—C17—C12 119.9 (3) C116—C117—C112 120.3 (2)
C16—C17—H171 120.0 C116—C117—H1171 122.7
C12—C17—H171 120.0 C112—C117—H1171 116.9
C3—C18—O19 128.2 (3) C103—C118—O119 128.2 (3)
C3—C18—O20 109.4 (2) C103—C118—O120 109.7 (2)
O19—C18—O20 122.3 (3) O119—C118—O120 122.0 (3)
C18—O20—C21 110.2 (2) C118—O120—C121 110.0 (2)
C2—C21—O20 104.14 (18) C102—C121—O120 104.57 (19)
C2—C21—C22 113.2 (2) C102—C121—C122 113.7 (2)
O20—C21—C22 110.3 (2) O120—C121—C122 109.8 (2)
C2—C21—H211 110.3 C102—C121—H1211 109.4
O20—C21—H211 109.0 O120—C121—H1211 107.1
C22—C21—H211 109.7 C122—C121—H1211 111.9
C21—C22—O23 111.80 (19) C121—C122—O123 111.63 (19)
C21—C22—H221 108.5 C121—C122—H1221 108.8
O23—C22—H221 112.7 O123—C122—H1221 109.1
C21—C22—H222 109.5 C121—C122—H1222 108.2
O23—C22—H222 105.2 O123—C122—H1222 110.5
H221—C22—H222 109.0 H1221—C122—H1222 108.5
C22—O23—C24 110.9 (2) C122—O123—C124 110.2 (2)
O1—C24—O23 110.67 (19) O101—C124—O123 109.8 (2)
O1—C24—C25 107.49 (18) O101—C124—C125 108.28 (18)
O23—C24—C25 108.6 (2) O123—C124—C125 109.0 (2)
O1—C24—H241 109.8 O101—C124—H1241 109.1
O23—C24—H241 109.3 O123—C124—H1241 110.5
C25—C24—H241 111.0 C125—C124—H1241 110.2
C24—C25—C26 119.5 (2) C124—C125—C126 120.9 (2)
C24—C25—C30 120.7 (2) C124—C125—C130 119.3 (2)
C26—C25—C30 119.9 (2) C126—C125—C130 119.8 (2)
C25—C26—C27 120.0 (3) C125—C126—C127 120.2 (3)
C25—C26—H261 122.5 C125—C126—H1261 119.7
C27—C26—H261 117.5 C127—C126—H1261 120.0
C26—C27—C28 120.0 (3) C126—C127—C128 120.0 (3)
C26—C27—H271 120.1 C126—C127—H1271 119.9
C28—C27—H271 119.9 C128—C127—H1271 120.0
C27—C28—C29 120.0 (3) C127—C128—C129 120.1 (3)
C27—C28—H281 119.3 C127—C128—H1281 119.0
C29—C28—H281 120.7 C129—C128—H1281 121.0
C28—C29—C30 120.3 (3) C128—C129—C130 120.0 (3)
C28—C29—H291 120.5 C128—C129—H1291 119.4
C30—C29—H291 119.2 C130—C129—H1291 120.7
C29—C30—C25 119.8 (3) C129—C130—C125 119.9 (3)
C29—C30—H301 118.6 C129—C130—H1301 120.3
C25—C30—H301 121.6 C125—C130—H1301 119.8

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H81···O19i 0.95 2.57 3.520 (4) 173
C14—H141···O119ii 0.95 2.55 3.309 (4) 137
C28—H281···O19iii 0.96 2.57 3.225 (4) 126

Symmetry codes: (i) x, y+1, z; (ii) x, y, z−1; (iii) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2623).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Best, D., Jenkinson, S. F., Rule, S. D., Higham, R., Mercer, T. B., Newell, R. J., Weymouth-Wilson, A. C., Fleet, G. W. J. & Petursson, S. (2008). Tetrahedron Lett.49, 2196–2199.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  4. Collins, P. M. & Ferrier, R. J. (1995). In Monosaccharides: Their Chemistry and Their Roles in Natural Products. New York: John Wiley & Sons.
  5. Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J. & Lievenset, J. C. (1992). J. Am. Chem. Soc.114, 3956–3962.
  6. Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [DOI] [PubMed]
  7. Jackson, G., Jones, H. F., Petursson, S. & Webber, J. M. (1982). Carbohydr. Res.102, 147–157.
  8. Jenkinson, S. F., Rule, S. D., Booth, K. V., Fleet, G. W. J., Watkin, D. J. & Petursson, S. (2008). Acta Cryst. E64, o26. [DOI] [PMC free article] [PubMed]
  9. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  10. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  11. Petursson, S. (2001). Carbohydr. Res.331, 239–245. [DOI] [PubMed]
  12. Petursson, S. (2003). Carbohydr. Res.338, 963–968. [DOI] [PubMed]
  13. Petursson, S., Jenkinson, S. F., Booth, K. V., Weymouth-Wilson, A. C., Watkin, D. J., Fleet, G. W. J. & Best, D. (2007). Acta Cryst. E63, o4121.
  14. Petursson, S. & Webber, J. M. (1982). Carbohydr. Res.103, 41–52.
  15. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, UK.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808012567/lh2623sup1.cif

e-64-o1012-sup1.cif (29.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012567/lh2623Isup2.hkl

e-64-o1012-Isup2.hkl (246.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES