Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):m788. doi: 10.1107/S1600536808012889

Dioxidobis(pentane-2,4-dionato-κ2 O,O′)(pyridine-4-carbaldehyde oxime-κN 1)uranium(VI)

Takeshi Kawasaki a, Takafumi Kitazawa a,b,*
PMCID: PMC2961597  PMID: 21202477

Abstract

The title compound, [U(C5H7O2)2O2(C6H6N2O)], exhibits a penta­gonal–bipyramidal coordination geometry around the UVI atom, involving two bidentate acetyl­acetonate ions and the pyridine ring of the pyridine-4-carbaldehyde oxime ligand. Hydrogen bonds exist between the OH group of the pyridine-4-carbaldehyde oxime ligand and the two O atoms of the acetyl­acetonate ions.

Related literature

For related literature, see: Alcock et al. (1984, 1987); Kawasaki et al. (2006); Saeki et al. (2006).graphic file with name e-64-0m788-scheme1.jpg

Experimental

Crystal data

  • [U(C5H7O2)2O2(C6H6N2O)]

  • M r = 590.37

  • Triclinic, Inline graphic

  • a = 8.1969 (6) Å

  • b = 11.2632 (9) Å

  • c = 11.7448 (9) Å

  • α = 71.016 (1)°

  • β = 75.660 (2)°

  • γ = 80.137 (2)°

  • V = 988.51 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.25 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.289, T max = 0.371 (expected range = 0.226–0.290)

  • 7404 measured reflections

  • 4832 independent reflections

  • 4538 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.048

  • S = 1.09

  • 4832 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.71 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalMaker (CrystalMaker, 2007); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012889/im2063sup1.cif

e-64-0m788-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012889/im2063Isup2.hkl

e-64-0m788-Isup2.hkl (236.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7⋯O5i 0.82 2.49 3.018 (4) 123
O7—H7⋯O3i 0.82 2.29 3.083 (4) 163

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Actinoide chemistry is highly related to the reprocessing of nuclear fuels and treatment of actinoide wastes in the backend chemistry of today's operating nuclear power plants. The fundamental investigation of the bonding and structure of uranium complexes provides important information in the field of backend chemistry. Structural properties of [AnO2(acac)2(py)] complexes (An = U, Np) (Alcock et al., 1984; Alcock et al., 1987; Kawasaki et al., 2006) were reported. [AnO2(acac)2(py)] complexes exhibit pentagonal-bipyramidal geometry around the AnVI ion which are coordinated by two oxo ligands, four oxygen atoms from the acac ions and one nitrogen atom from the pyridine molecule. Recently, 237Np Mößbauer spectra of the [NpO2(acac)2(py)] (Kawasaki et al., 2006; Saeki et al., 2006) were reported. We report herein the synthesis and crystal structure of the new uranyl(VI) acetylacetonate complex [UO2(acac)2(4-aldpy)], (I), (4-aldpy = pyridine-4-carbaldehyde oxime).

In the title complex, [UO2(acac)2(4-aldpy)] (I), the uranyl(VI) moiety is constructed from U1, O1 and O2. The O1—U1—O2 angle of the uranyl(VI) ion is 177.7 (1) °. U1 exhibits a pentagonal-bipyramidal coordination geometry. The two O atoms from the uranyl(VI) ion occupy the U1 axial positions whereas four O atoms from the two chelating acac ions and one N atom from the 4-aldpy are situated in the equatorial plane (Fig. 1). The deviations of the four O atoms (O3, O4, O5 and O6) of the acac and one N1 atom of the 4-aldpy from the equatorial plane (O3, O4, O5, O6 and N1) are within 0.13 Å. The dihedral angle between the pyridine ring of the 4-aldpy ligand and the equatorial plane of the uranyl(VI) ion in I is 44.5 (1)°. The U1—Oacac distances are longer than the U1—Ouranyl distances and are shorter than the U1—N1 distance which measures to 2.599 (3) Å. This bond length is similar to the U—N distance [2.602 (3) Å] in [UO2(acac)2(py)] (Kawasaki et al.). However, [UO2(acac)2(py)] crystallized in the non-centrosymmetric space group, Fdd2, whereas I crystallized in the centrosymmetric space group P1. The differences in the crystal structures are obviously caused by the additional aldoxime substituent in I acting as an efficient hydrogen bond donor site. The O7 atom of the OH group of the 4-aldpy is connected with O3 and O5 atoms of the acac by intermolecular hydrogen bonds. This results in a 1-D chain aggregate of I along the [1, 0, - 1] direction (Fig. 2).

Experimental

To 10 ml of a methanolic solution containing 1 mmol UO2(NO3)2.6H2O was added 3.0 mmol of acetylacetone and 3.0 mmol of pyridine-4-carbaldehyde oxime oximepyridine in 5 ml of methanol. After the solvent evaporated slowly at room temperature for a few days, orange crystals of the title complex were obtained.

Refinement

All H atoms were placed at calculated positions (O—H = 0.82 Å, C(CH)—H = 0.93 Å or C(CH3)—H = 0.96 Å) and allowed to ride on the parent atom [Uiso(H) = 1.2Ueq(CH) or Uiso(H) = 1.5Ueq(CH3, O)].

Figures

Fig. 1.

Fig. 1.

Molecular structure of [UO2(acac)2(4-aldpy)] (I) showing the atomic notations; displacement ellipsoids are depicted at the 50% probability level; H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Strcuture of the 1-D chain aggregate of I. Dashed lines indicate intermolecular OH···Oacac hydrogen bonds between neighboring molecules; H atoms are omitted for clarity.

Crystal data

[U(C5H7O2)2O2(C6H6N2O)] Z = 2
Mr = 590.37 F000 = 556
Triclinic, P1 Dx = 1.983 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.1969 (6) Å Cell parameters from 5400 reflections
b = 11.2632 (9) Å θ = 2.3–28.3º
c = 11.7448 (9) Å µ = 8.25 mm1
α = 71.016 (1)º T = 291 K
β = 75.660 (2)º Block, orange
γ = 80.137 (2)º 0.20 × 0.18 × 0.15 mm
V = 988.51 (13) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 4832 independent reflections
Radiation source: fine-focus sealed tube 4538 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.013
Detector resolution: 8.366 pixels mm-1 θmax = 28.3º
T = 291 K θmin = 1.9º
φ and ω scans h = −10→9
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) k = −14→15
Tmin = 0.289, Tmax = 0.371 l = −15→15
7404 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019 H-atom parameters constrained
wR(F2) = 0.048   w = 1/[σ2(Fo2) + (0.018P)2 + 0.4544P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.016
4832 reflections Δρmax = 0.63 e Å3
240 parameters Δρmin = −0.71 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
U1 0.097943 (12) 0.796870 (9) 0.824753 (9) 0.03536 (4)
O1 −0.0310 (3) 0.9423 (2) 0.7952 (2) 0.0525 (6)
O2 0.2248 (3) 0.6515 (2) 0.8605 (2) 0.0503 (5)
O3 0.3515 (3) 0.8856 (2) 0.7061 (2) 0.0499 (5)
O4 0.2204 (3) 0.8617 (2) 0.9494 (2) 0.0490 (5)
O5 0.1115 (3) 0.7877 (3) 0.6262 (2) 0.0601 (7)
O6 −0.1153 (3) 0.6784 (3) 0.8304 (2) 0.0579 (6)
O7 −0.5265 (4) 0.6725 (3) 1.5844 (2) 0.0731 (8)
H7 −0.5787 0.7280 1.6141 0.110*
N1 −0.0878 (3) 0.7423 (2) 1.0457 (2) 0.0420 (5)
N2 −0.4406 (4) 0.7272 (3) 1.4648 (3) 0.0593 (8)
C1 0.4046 (6) 0.8379 (5) 1.0811 (4) 0.0735 (12)
H1A 0.3173 0.8863 1.1233 0.110*
H1B 0.5126 0.8648 1.0740 0.110*
H1C 0.4033 0.7501 1.1266 0.110*
C2 0.3743 (4) 0.8576 (3) 0.9552 (3) 0.0470 (7)
C3 0.5049 (4) 0.8757 (4) 0.8536 (3) 0.0531 (8)
H3 0.6133 0.8728 0.8664 0.064*
C4 0.4875 (4) 0.8978 (3) 0.7336 (3) 0.0442 (7)
C5 0.6322 (5) 0.9391 (4) 0.6284 (4) 0.0598 (9)
H5A 0.6415 0.8938 0.5701 0.090*
H5B 0.7351 0.9220 0.6584 0.090*
H5C 0.6127 1.0279 0.5890 0.090*
C6 −0.2910 (7) 0.5394 (5) 0.8211 (5) 0.0811 (14)
H6A −0.2656 0.4802 0.8959 0.122*
H6B −0.2988 0.4946 0.7660 0.122*
H6C −0.3968 0.5882 0.8394 0.122*
C7 −0.1524 (5) 0.6261 (3) 0.7615 (4) 0.0546 (9)
C8 −0.0769 (6) 0.6479 (4) 0.6384 (4) 0.0612 (10)
H8 −0.1122 0.6050 0.5946 0.073*
C9 0.0470 (5) 0.7286 (4) 0.5752 (3) 0.0551 (8)
C10 0.1107 (7) 0.7529 (6) 0.4392 (4) 0.0844 (14)
H10A 0.0741 0.8381 0.3971 0.127*
H10B 0.0667 0.6955 0.4119 0.127*
H10C 0.2321 0.7406 0.4216 0.127*
C11 −0.1242 (4) 0.8257 (3) 1.1105 (3) 0.0454 (7)
H11 −0.0868 0.9054 1.0725 0.054*
C12 −0.2131 (4) 0.7997 (3) 1.2294 (3) 0.0450 (7)
H12 −0.2366 0.8607 1.2704 0.054*
C13 −0.2680 (4) 0.6800 (3) 1.2880 (3) 0.0422 (6)
C14 −0.2309 (5) 0.5944 (3) 1.2224 (3) 0.0499 (8)
H14 −0.2650 0.5136 1.2590 0.060*
C15 −0.1426 (4) 0.6286 (3) 1.1019 (3) 0.0477 (7)
H15 −0.1205 0.5699 1.0582 0.057*
C16 −0.3646 (4) 0.6443 (3) 1.4146 (3) 0.0499 (7)
H16 −0.3700 0.5594 1.4585 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
U1 0.03482 (6) 0.03467 (6) 0.03998 (6) −0.00562 (4) −0.00817 (4) −0.01417 (4)
O1 0.0479 (13) 0.0446 (13) 0.0623 (14) 0.0015 (10) −0.0158 (11) −0.0122 (11)
O2 0.0508 (13) 0.0390 (11) 0.0602 (14) 0.0021 (10) −0.0093 (11) −0.0185 (10)
O3 0.0451 (12) 0.0615 (14) 0.0453 (12) −0.0194 (11) −0.0089 (10) −0.0120 (10)
O4 0.0425 (12) 0.0625 (14) 0.0517 (13) −0.0112 (10) −0.0082 (10) −0.0279 (11)
O5 0.0639 (15) 0.0816 (19) 0.0458 (13) −0.0301 (14) −0.0099 (11) −0.0229 (12)
O6 0.0551 (14) 0.0736 (17) 0.0558 (14) −0.0292 (13) −0.0066 (11) −0.0255 (12)
O7 0.081 (2) 0.081 (2) 0.0483 (14) −0.0147 (16) 0.0146 (13) −0.0240 (14)
N1 0.0463 (14) 0.0372 (12) 0.0438 (13) −0.0086 (11) −0.0025 (11) −0.0166 (10)
N2 0.0593 (18) 0.068 (2) 0.0463 (15) −0.0052 (15) 0.0015 (13) −0.0211 (14)
C1 0.076 (3) 0.098 (3) 0.061 (2) −0.014 (2) −0.027 (2) −0.030 (2)
C2 0.0491 (18) 0.0439 (16) 0.0576 (19) −0.0041 (14) −0.0196 (15) −0.0219 (14)
C3 0.0380 (16) 0.065 (2) 0.063 (2) −0.0031 (15) −0.0154 (15) −0.0240 (17)
C4 0.0367 (15) 0.0370 (15) 0.0599 (19) −0.0051 (12) −0.0083 (13) −0.0162 (13)
C5 0.0427 (18) 0.066 (2) 0.068 (2) −0.0156 (16) −0.0021 (16) −0.0179 (19)
C6 0.088 (3) 0.074 (3) 0.092 (3) −0.043 (3) −0.037 (3) −0.009 (2)
C7 0.056 (2) 0.0462 (18) 0.070 (2) −0.0095 (15) −0.0324 (18) −0.0129 (16)
C8 0.081 (3) 0.060 (2) 0.059 (2) −0.015 (2) −0.035 (2) −0.0203 (18)
C9 0.064 (2) 0.062 (2) 0.0488 (18) −0.0043 (17) −0.0251 (17) −0.0193 (16)
C10 0.101 (4) 0.113 (4) 0.052 (2) −0.022 (3) −0.027 (2) −0.028 (2)
C11 0.0494 (17) 0.0335 (14) 0.0522 (17) −0.0071 (13) −0.0011 (14) −0.0168 (13)
C12 0.0470 (17) 0.0408 (16) 0.0516 (17) −0.0059 (13) −0.0046 (13) −0.0230 (13)
C13 0.0398 (15) 0.0447 (16) 0.0443 (15) −0.0046 (12) −0.0067 (12) −0.0174 (13)
C14 0.061 (2) 0.0338 (15) 0.0496 (17) −0.0106 (14) −0.0003 (15) −0.0110 (13)
C15 0.062 (2) 0.0337 (15) 0.0469 (16) −0.0083 (14) 0.0011 (14) −0.0185 (13)
C16 0.0557 (19) 0.0467 (17) 0.0467 (17) −0.0092 (15) −0.0036 (14) −0.0162 (14)

Geometric parameters (Å, °)

U1—O1 1.772 (2) C5—H5A 0.9600
U1—O2 1.768 (2) C5—H5B 0.9600
U1—O3 2.374 (2) C5—H5C 0.9600
U1—O4 2.314 (2) C6—C7 1.509 (5)
U1—O5 2.342 (2) C6—H6A 0.9600
U1—O6 2.350 (2) C6—H6B 0.9600
U1—N1 2.599 (3) C6—H6C 0.9600
O3—C4 1.275 (4) C7—C8 1.383 (6)
O4—C2 1.272 (4) C8—C9 1.382 (6)
O5—C9 1.272 (4) C8—H8 0.9300
O6—C7 1.260 (4) C9—C10 1.500 (6)
O7—N2 1.394 (4) C10—H10A 0.9600
O7—H7 0.8200 C10—H10B 0.9600
N1—C15 1.334 (4) C10—H10C 0.9600
N1—C11 1.345 (4) C11—C12 1.367 (4)
N2—C16 1.259 (5) C11—H11 0.9300
C1—C2 1.499 (5) C12—C13 1.394 (4)
C1—H1A 0.9600 C12—H12 0.9300
C1—H1B 0.9600 C13—C14 1.372 (4)
C1—H1C 0.9600 C13—C16 1.462 (4)
C2—C3 1.377 (5) C14—C15 1.382 (5)
C3—C4 1.389 (5) C14—H14 0.9300
C3—H3 0.9300 C15—H15 0.9300
C4—C5 1.497 (5) C16—H16 0.9300
O1—U1—O2 177.73 (10) C4—C5—H5A 109.5
O1—U1—O3 94.67 (10) C4—C5—H5B 109.5
O1—U1—O4 89.96 (10) H5A—C5—H5B 109.5
O1—U1—O5 90.77 (11) C4—C5—H5C 109.5
O1—U1—O6 93.99 (11) H5A—C5—H5C 109.5
O1—U1—N1 86.40 (10) H5B—C5—H5C 109.5
O2—U1—O3 86.31 (10) C7—C6—H6A 109.5
O2—U1—O4 88.42 (10) C7—C6—H6B 109.5
O2—U1—O5 91.46 (11) H6A—C6—H6B 109.5
O2—U1—O6 86.34 (11) C7—C6—H6C 109.5
O2—U1—N1 91.57 (10) H6A—C6—H6C 109.5
O3—U1—O4 71.32 (8) H6B—C6—H6C 109.5
O3—U1—O5 75.30 (8) O6—C7—C8 123.4 (3)
O3—U1—O6 145.01 (9) O6—C7—C6 115.5 (4)
O3—U1—N1 142.48 (8) C8—C7—C6 121.1 (3)
O4—U1—O5 146.56 (8) C9—C8—C7 125.1 (3)
O4—U1—O6 142.51 (8) C9—C8—H8 117.4
O4—U1—N1 71.18 (8) C7—C8—H8 117.4
O5—U1—O6 70.74 (8) O5—C9—C8 123.3 (3)
O5—U1—N1 142.22 (8) O5—C9—C10 116.0 (4)
O6—U1—N1 71.89 (8) C8—C9—C10 120.6 (3)
C4—O3—U1 133.1 (2) C9—C10—H10A 109.5
C2—O4—U1 131.5 (2) C9—C10—H10B 109.5
C9—O5—U1 138.1 (2) H10A—C10—H10B 109.5
C7—O6—U1 137.8 (2) C9—C10—H10C 109.5
N2—O7—H7 109.5 H10A—C10—H10C 109.5
C15—N1—C11 117.3 (3) H10B—C10—H10C 109.5
C15—N1—U1 121.6 (2) N1—C11—C12 123.6 (3)
C11—N1—U1 121.0 (2) N1—C11—H11 118.2
C16—N2—O7 111.2 (3) C12—C11—H11 118.2
C2—C1—H1A 109.5 C11—C12—C13 118.7 (3)
C2—C1—H1B 109.5 C11—C12—H12 120.6
H1A—C1—H1B 109.5 C13—C12—H12 120.6
C2—C1—H1C 109.5 C14—C13—C12 118.0 (3)
H1A—C1—H1C 109.5 C14—C13—C16 119.6 (3)
H1B—C1—H1C 109.5 C12—C13—C16 122.4 (3)
O4—C2—C3 123.3 (3) C13—C14—C15 119.8 (3)
O4—C2—C1 115.3 (3) C13—C14—H14 120.1
C3—C2—C1 121.3 (3) C15—C14—H14 120.1
C2—C3—C4 125.1 (3) N1—C15—C14 122.6 (3)
C2—C3—H3 117.5 N1—C15—H15 118.7
C4—C3—H3 117.5 C14—C15—H15 118.7
O3—C4—C3 123.4 (3) N2—C16—C13 120.8 (3)
O3—C4—C5 116.4 (3) N2—C16—H16 119.6
C3—C4—C5 120.2 (3) C13—C16—H16 119.6

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7···O5i 0.82 2.49 3.018 (4) 123
O7—H7···O3i 0.82 2.29 3.083 (4) 163

Symmetry codes: (i) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2063).

References

  1. Alcock, N. W., Flanders, D. J. & Brown, D. (1984). J. Chem. Soc. Dalton Trans. pp. 679–681.
  2. Alcock, N. W., Flanders, D. J., Pennington, M. & Brown, D. (1987). Acta Cryst. C43, 1476–1480.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. CrystalMaker (2007). CrystalMaker CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
  5. Kawasaki, T., Kitazawa, T., Nishimura, T., Nakada, M. & Saeki, M. (2006). Hyperfine Interact.166, 417–423.
  6. Saeki, M., Nakada, M., Kawasaki, T., Nishimura, T., Kitazawa, T. & Takeda, M. (2006). J. Radioanal. Nucl. Chem.270, 379–384.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012889/im2063sup1.cif

e-64-0m788-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012889/im2063Isup2.hkl

e-64-0m788-Isup2.hkl (236.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES