Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 7;64(Pt 6):o1000. doi: 10.1107/S1600536808009598

2,3-Diamino­phenazine tetra­hydrate

Xiao-Feng Li a,*, Yan An a, Yan-Sheng Yin a
PMCID: PMC2961609  PMID: 21202528

Abstract

The title compound, C12H10N4·4H2O, was obtained from a room-temperature solution of o-phenyl­enediamine and copper acetate. In the crystal structure, there are significant π–π stacking inter­actions, with a centroid–centroid separation of 3.575 (2) Å. In addition, inter­molecular O—H⋯O, N—H⋯O, N—H⋯N and O—H⋯N hydrogen bonds link 2,3-diamino­phenazine mol­ecules and water mol­ecules, forming a three-dimensional framework.

Related literature

For related literature, see: Brownstein & Enright (1995); Doyle et al. (2001); Chłopek et al. (2005).graphic file with name e-64-o1000-scheme1.jpg

Experimental

Crystal data

  • C12H10N4·4H2O

  • M r = 282.30

  • Orthorhombic, Inline graphic

  • a = 16.7593 (18) Å

  • b = 18.1200 (19) Å

  • c = 4.7834 (5) Å

  • V = 1452.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.37 × 0.32 × 0.23 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.965, T max = 0.977

  • 7735 measured reflections

  • 1608 independent reflections

  • 1432 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.140

  • S = 1.14

  • 1608 reflections

  • 225 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009598/lh2601sup1.cif

e-64-o1000-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009598/lh2601Isup2.hkl

e-64-o1000-Isup2.hkl (79.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O2Wi 0.895 (10) 2.218 (12) 3.105 (5) 171 (3)
N4—H4C⋯N4ii 0.90 (3) 2.58 (3) 3.198 (3) 126 (3)
N3—H3B⋯O1Wiii 0.906 (10) 2.165 (16) 3.048 (6) 165 (4)
N3—H3C⋯N3ii 0.895 (11) 2.33 (2) 3.122 (4) 147 (3)
O4W—H4WA⋯O4Wiv 0.855 (19) 2.017 (19) 2.871 (3) 176 (4)
O4W—H4WB⋯N2 0.867 (17) 1.924 (19) 2.787 (3) 173 (4)
O3W—H3WB⋯N1 0.872 (19) 1.96 (3) 2.801 (3) 161 (6)
O2W—H2WA⋯O4Wv 0.84 (2) 2.01 (2) 2.843 (4) 178 (5)
O1W—H1WA⋯O1Wvi 0.84 (6) 2.15 (6) 2.860 (7) 142 (6)
O2W—H2WB⋯O2Wvii 0.87 (4) 1.97 (4) 2.812 (5) 161 (3)
O1W—H1WB⋯O3W 0.85 (3) 2.09 (3) 2.882 (6) 155 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05-11).

supplementary crystallographic information

Comment

The crystal structures of phenazinediamine (Doyle, et al., 2001) and examples of its derivatives (Brownstein, et al., 1995; Krzysztof, et al., 2005) have been published. As part of our studies of these types of compounds we report here the crystal structure of the title compound (I) which was synthesized at room temperature using o-Phenylenediamine and copper acetate.

In compound (I), the asymmetric unit contains a 2,3-Diamino-phenazine molecule and four water molecules (Fig. 1). In the crystal structure, 2,3-Diamino-phenazine molecules related by unit cell translations along the c axis form moderately strong π···π stacking interactions (Cg1···.Cg2(x, y, -1 + z) and Cg1···Cg3(x, y, 1 + z) = 3.575 (2) Å, where Cg1, Cg2 and Cg3 are the centroids defined by ring atoms N1/N2/C1/C6/C9/C10, C1—C6 and C7—C12, respectively). In addition, water molecules and 2,3-Diamino-phenazine molecules are linked by O—H···N, O—H···O, N—H···N and H—H···O hydrogen bonds to form a three-dimensional network (Table 1 & Fig.2).

Experimental

A mixture of o-Phenylenediamine(0.5 mmol, 0.054 g), Cu(CH3COO)2 (0.5 mmol,0.099 g), NaOH (1 mmol, 0.04 g), and water (10 ml) was placed in a 20 ml vial, stirring in air for 1 h. It was then sealed for 1 week and the resulting black block-shaped single crystals were collected. Yield: 67%. C&H analysis for C12H18N4O4 (found/calc): C, 51.03(51.06), H, 6.39(6.43).

Refinement

In the absence of significant anomalous dispersion effects the Friedel pairs were merged. The H atoms were placed in calculated positions in the riding-model approximation (C—H 0.93 Å, N—H 0.90 Å), with their temperature factors were set to 1.2 times those of the equivalent isotropic temperature factors of the parent atoms. The water H atoms were located in difference Fourier maps and refined isotropically with distance restrains of O—H = 0.85 (2) and H···H = 1.39 (1) Å.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I).

Fig. 2.

Fig. 2.

Part of the crystal structure viewed along the c-axis. Dashed lines are drawn between the donor and acceptor atoms of the hydrogen bonds but H atoms are not showm.

Crystal data

C12H10N4·4H2O F000 = 600
Mr = 282.30 Dx = 1.291 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 3569 reflections
a = 16.7593 (18) Å θ = 2.7–24.3º
b = 18.1200 (19) Å µ = 0.10 mm1
c = 4.7834 (5) Å T = 293 (2) K
V = 1452.6 (3) Å3 Block, black
Z = 4 0.37 × 0.32 × 0.23 mm

Data collection

Bruker SMART APEX area-detector diffractometer 1608 independent reflections
Radiation source: fine-focus sealed tube 1432 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.022
T = 293(2) K θmax = 26.0º
φ and ω scans θmin = 1.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −20→18
Tmin = 0.965, Tmax = 0.977 k = −19→22
7735 measured reflections l = −5→5

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.140   w = 1/[σ2(Fo2) + (0.0963P)2] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max < 0.001
1608 reflections Δρmax = 0.29 e Å3
225 parameters Δρmin = −0.12 e Å3
17 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.51508 (13) 0.31719 (12) 0.3965 (5) 0.0417 (6)
N2 0.51933 (12) 0.16406 (12) 0.2821 (6) 0.0410 (5)
C10 0.46946 (14) 0.20894 (15) 0.1460 (6) 0.0393 (6)
C11 0.41763 (15) 0.18021 (16) −0.0623 (7) 0.0443 (7)
H11A 0.4184 0.1299 −0.1008 0.053*
C1 0.56542 (15) 0.27142 (16) 0.5338 (6) 0.0418 (7)
C12 0.36660 (15) 0.22488 (17) −0.2076 (6) 0.0445 (7)
C8 0.41408 (16) 0.33188 (16) 0.0507 (7) 0.0456 (7)
H8A 0.4123 0.3823 0.0873 0.055*
C9 0.46739 (15) 0.28738 (15) 0.2042 (6) 0.0394 (6)
N4 0.31334 (15) 0.19700 (17) −0.3960 (7) 0.0603 (8)
H4B 0.3134 (18) 0.1476 (6) −0.403 (10) 0.072*
H4C 0.2916 (19) 0.2287 (16) −0.520 (7) 0.072*
N3 0.30987 (17) 0.34664 (19) −0.2858 (6) 0.0630 (8)
H3B 0.315 (2) 0.3961 (7) −0.263 (12) 0.076*
H3C 0.2912 (19) 0.333 (2) −0.454 (4) 0.076*
C5 0.62032 (15) 0.14891 (17) 0.6301 (7) 0.0498 (7)
H5A 0.6222 0.0985 0.5942 0.060*
C6 0.56701 (14) 0.19474 (15) 0.4760 (6) 0.0401 (6)
C2 0.61674 (16) 0.30014 (19) 0.7428 (7) 0.0512 (8)
H2A 0.6163 0.3504 0.7828 0.061*
C7 0.36499 (15) 0.30342 (16) −0.1501 (6) 0.0446 (7)
C4 0.66820 (16) 0.1785 (2) 0.8286 (7) 0.0561 (8)
H4A 0.7025 0.1480 0.9289 0.067*
C3 0.66680 (18) 0.25428 (18) 0.8851 (7) 0.0576 (9)
H3A 0.7004 0.2736 1.0213 0.069*
O4W 0.54392 (14) 0.01642 (12) 0.1437 (6) 0.0592 (6)
O3W 0.53446 (19) 0.47020 (15) 0.4439 (8) 0.0798 (8)
O2W 0.29410 (18) 0.02670 (19) 0.5763 (7) 0.0818 (8)
O1W 0.7032 (3) 0.4897 (3) 0.3542 (10) 0.1042 (11)
H4WB 0.541 (2) 0.0631 (11) 0.182 (8) 0.088 (14)*
H3WB 0.535 (3) 0.4238 (14) 0.396 (16) 0.16 (3)*
H4WA 0.516 (2) 0.0085 (18) −0.004 (7) 0.070 (12)*
H3WA 0.4832 (14) 0.481 (2) 0.455 (16) 0.14 (2)*
H2WA 0.3416 (11) 0.014 (2) 0.601 (11) 0.102 (16)*
H1WA 0.723 (3) 0.469 (4) 0.495 (12) 0.22 (4)*
H2WB 0.266 (2) 0.016 (2) 0.724 (8) 0.093 (16)*
H1WB 0.6547 (14) 0.478 (2) 0.330 (13) 0.11 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0396 (11) 0.0510 (12) 0.0344 (13) −0.0021 (9) 0.0026 (10) −0.0015 (11)
N2 0.0359 (11) 0.0526 (12) 0.0346 (12) 0.0009 (9) 0.0026 (11) −0.0002 (11)
C10 0.0319 (12) 0.0550 (14) 0.0311 (14) −0.0024 (10) 0.0056 (12) 0.0001 (12)
C11 0.0373 (13) 0.0571 (15) 0.0386 (15) −0.0018 (12) −0.0006 (13) −0.0059 (13)
C1 0.0337 (13) 0.0606 (16) 0.0309 (15) −0.0032 (11) 0.0033 (11) 0.0012 (12)
C12 0.0302 (13) 0.0741 (18) 0.0293 (14) −0.0081 (12) 0.0057 (11) −0.0011 (14)
C8 0.0444 (14) 0.0551 (14) 0.0375 (16) 0.0061 (12) 0.0035 (13) 0.0010 (13)
C9 0.0361 (12) 0.0509 (14) 0.0313 (16) 0.0018 (11) 0.0035 (11) −0.0008 (12)
N4 0.0465 (14) 0.092 (2) 0.0428 (16) −0.0086 (13) −0.0108 (13) −0.0011 (17)
N3 0.0539 (15) 0.089 (2) 0.0463 (17) 0.0191 (14) −0.0071 (14) 0.0025 (15)
C5 0.0394 (13) 0.0697 (17) 0.0401 (17) 0.0079 (12) 0.0028 (13) 0.0071 (16)
C6 0.0303 (12) 0.0586 (15) 0.0315 (15) −0.0004 (10) 0.0021 (12) 0.0022 (13)
C2 0.0423 (15) 0.0733 (18) 0.0379 (17) −0.0112 (13) 0.0007 (13) −0.0048 (16)
C7 0.0357 (13) 0.0699 (18) 0.0282 (15) 0.0063 (12) 0.0034 (12) 0.0024 (13)
C4 0.0358 (14) 0.090 (2) 0.0421 (18) 0.0057 (15) −0.0020 (13) 0.0131 (17)
C3 0.0379 (15) 0.098 (3) 0.0366 (16) −0.0096 (15) −0.0058 (14) 0.0019 (17)
O4W 0.0671 (14) 0.0536 (12) 0.0569 (15) 0.0009 (10) −0.0081 (13) 0.0014 (12)
O3W 0.103 (2) 0.0588 (14) 0.078 (2) −0.0099 (13) −0.003 (2) −0.0042 (14)
O2W 0.0642 (17) 0.118 (2) 0.0636 (18) 0.0089 (16) −0.0007 (16) 0.0027 (17)
O1W 0.097 (2) 0.123 (3) 0.092 (3) −0.006 (2) 0.007 (2) 0.011 (2)

Geometric parameters (Å, °)

N1—C9 1.333 (3) N3—H3B 0.906 (10)
N1—C1 1.353 (3) N3—H3C 0.895 (11)
N2—C10 1.335 (3) C5—C4 1.353 (5)
N2—C6 1.345 (4) C5—C6 1.425 (4)
C10—C11 1.421 (4) C5—H5A 0.9300
C10—C9 1.449 (4) C2—C3 1.363 (4)
C11—C12 1.367 (4) C2—H2A 0.9300
C11—H11A 0.9300 C4—C3 1.400 (4)
C1—C6 1.417 (4) C4—H4A 0.9300
C1—C2 1.417 (4) C3—H3A 0.9300
C12—N4 1.366 (4) O4W—H4WB 0.867 (17)
C12—C7 1.450 (4) O4W—H4WA 0.855 (19)
C8—C7 1.366 (4) O3W—H3WB 0.872 (19)
C8—C9 1.410 (4) O3W—H3WA 0.883 (19)
C8—H8A 0.9300 O2W—H2WA 0.837 (19)
N4—H4B 0.895 (10) O2W—H2WB 0.87 (4)
N4—H4C 0.90 (3) O1W—H1WA 0.84 (6)
N3—C7 1.374 (4) O1W—H1WB 0.849 (18)
C9—N1—C1 117.4 (2) C7—N3—H3C 120 (3)
C10—N2—C6 117.2 (2) H3B—N3—H3C 114 (4)
N2—C10—C11 120.1 (2) C4—C5—C6 120.3 (3)
N2—C10—C9 121.2 (2) C4—C5—H5A 119.9
C11—C10—C9 118.7 (2) C6—C5—H5A 119.9
C12—C11—C10 121.5 (3) N2—C6—C1 121.9 (2)
C12—C11—H11A 119.3 N2—C6—C5 119.2 (3)
C10—C11—H11A 119.3 C1—C6—C5 118.8 (2)
N1—C1—C6 121.2 (2) C3—C2—C1 120.1 (3)
N1—C1—C2 119.7 (3) C3—C2—H2A 119.9
C6—C1—C2 119.1 (3) C1—C2—H2A 119.9
N4—C12—C11 121.7 (3) C8—C7—N3 121.5 (3)
N4—C12—C7 118.4 (3) C8—C7—C12 119.5 (3)
C11—C12—C7 119.8 (3) N3—C7—C12 118.9 (3)
C7—C8—C9 122.2 (3) C5—C4—C3 120.9 (3)
C7—C8—H8A 118.9 C5—C4—H4A 119.6
C9—C8—H8A 118.9 C3—C4—H4A 119.6
N1—C9—C8 120.5 (3) C2—C3—C4 120.8 (3)
N1—C9—C10 121.1 (2) C2—C3—H3A 119.6
C8—C9—C10 118.4 (2) C4—C3—H3A 119.6
C12—N4—H4B 113 (3) H4WB—O4W—H4WA 108 (2)
C12—N4—H4C 118 (2) H3WB—O3W—H3WA 105 (2)
H4B—N4—H4C 128 (4) H2WA—O2W—H2WB 109 (2)
C7—N3—H3B 117 (3) H1WA—O1W—H1WB 112 (3)
C6—N2—C10—C11 179.8 (2) N1—C1—C6—N2 0.5 (4)
C6—N2—C10—C9 0.4 (4) C2—C1—C6—N2 179.4 (3)
N2—C10—C11—C12 −179.2 (2) N1—C1—C6—C5 −179.0 (3)
C9—C10—C11—C12 0.2 (4) C2—C1—C6—C5 0.0 (4)
C9—N1—C1—C6 −0.3 (4) C4—C5—C6—N2 −179.2 (3)
C9—N1—C1—C2 −179.2 (2) C4—C5—C6—C1 0.2 (4)
C10—C11—C12—N4 −176.0 (3) N1—C1—C2—C3 179.0 (3)
C10—C11—C12—C7 0.2 (4) C6—C1—C2—C3 0.0 (4)
C1—N1—C9—C8 −179.3 (2) C9—C8—C7—N3 175.9 (3)
C1—N1—C9—C10 0.2 (4) C9—C8—C7—C12 0.6 (4)
C7—C8—C9—N1 179.2 (2) N4—C12—C7—C8 175.8 (3)
C7—C8—C9—C10 −0.2 (4) C11—C12—C7—C8 −0.6 (4)
N2—C10—C9—N1 −0.3 (3) N4—C12—C7—N3 0.4 (4)
C11—C10—C9—N1 −179.6 (3) C11—C12—C7—N3 −176.0 (3)
N2—C10—C9—C8 179.2 (3) C6—C5—C4—C3 −0.5 (4)
C11—C10—C9—C8 −0.2 (3) C1—C2—C3—C4 −0.3 (5)
C10—N2—C6—C1 −0.5 (4) C5—C4—C3—C2 0.5 (5)
C10—N2—C6—C5 179.0 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···O2Wi 0.895 (10) 2.218 (12) 3.105 (5) 171 (3)
N4—H4C···N4ii 0.90 (3) 2.58 (3) 3.198 (3) 126 (3)
N3—H3B···O1Wiii 0.906 (10) 2.165 (16) 3.048 (6) 165 (4)
N3—H3C···N3ii 0.895 (11) 2.33 (2) 3.122 (4) 147 (3)
O4W—H4WA···O4Wiv 0.855 (19) 2.017 (19) 2.871 (3) 176 (4)
O4W—H4WB···N2 0.867 (17) 1.924 (19) 2.787 (3) 173 (4)
O3W—H3WB···N1 0.872 (19) 1.96 (3) 2.801 (3) 161 (6)
O2W—H2WA···O4Wv 0.84 (2) 2.01 (2) 2.843 (4) 178 (5)
O1W—H1WA···O1Wvi 0.84 (6) 2.15 (6) 2.860 (7) 142 (6)
O2W—H2WB···O2Wvii 0.87 (4) 1.97 (4) 2.812 (5) 161 (3)
O1W—H1WB···O3W 0.85 (3) 2.09 (3) 2.882 (6) 155 (5)

Symmetry codes: (i) x, y, z−1; (ii) −x+1/2, y, z−1/2; (iii) −x+1, −y+1, z−1/2; (iv) −x+1, −y, z−1/2; (v) −x+1, −y, z+1/2; (vi) −x+3/2, y, z+1/2; (vii) −x+1/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2601).

References

  1. Brownstein, S. K. & Enright, G. D. (1995). Acta Cryst. C51, 1579–1581.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chłopek, K., Bill, E., Weyhermüller, T. & Wieghardt, K. (2005). Inorg. Chem.44, 7087–7098. [DOI] [PubMed]
  4. Doyle, R. P., Kruger, P. E., Mackie, P. R. & Nieuwenhuyzen, M. (2001). Acta Cryst. C57, 104–105. [DOI] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808009598/lh2601sup1.cif

e-64-o1000-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808009598/lh2601Isup2.hkl

e-64-o1000-Isup2.hkl (79.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES