Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 3;64(Pt 6):o970. doi: 10.1107/S1600536808012506

Methyl 3-[(E)-furfuryl­idene]dithio­carbazate

Shang Shan a,*, Shan-Heng Wang a, Ying-Li Xu a, Pei-Jin Xie a, Yu-Liang Tian a
PMCID: PMC2961615  PMID: 21202699

Abstract

The mol­ecule of the title Schiff base compound, C7H8N2OS2, prepared by the reaction of methyl dithio­carbazate and furfural in an ethanol solution under reflux, adopts an E configuration; the dithio­carbazate and furan units are located on opposite sides of the C=N double bond. The planar dithio­carbazate group is twisted slightly with respect to the furan ring, making a dihedral angle of 5.2 (1)°. Adjacent mol­ecules are linked by N—H⋯S hydrogen bonding to form a supra­molecular dimer across an inversion center.

Related literature

For general background, see: Okabe et al. (1993); Shan et al. (2002, 2003). For a related structure, see: Chen et al. (2007). For the synthesis, see: Hu et al. (2001).graphic file with name e-64-0o970-scheme1.jpg

Experimental

Crystal data

  • C7H8N2OS2

  • M r = 200.27

  • Triclinic, Inline graphic

  • a = 4.0866 (8) Å

  • b = 8.8698 (12) Å

  • c = 12.8453 (15) Å

  • α = 93.970 (14)°

  • β = 91.856 (12)°

  • γ = 98.293 (12)°

  • V = 459.21 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 294 (2) K

  • 0.34 × 0.28 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.850, T max = 0.950 (expected range = 0.804–0.899)

  • 4733 measured reflections

  • 1608 independent reflections

  • 1349 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.096

  • S = 1.09

  • 1608 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012506/xu2417sup1.cif

e-64-0o970-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012506/xu2417Isup2.hkl

e-64-0o970-Isup2.hkl (77.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.65 3.4892 (17) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. M203027).

supplementary crystallographic information

Comment

Since some hydrazone derivatives have shown the potential bioactivity as DNA-damaging or mutagenic agents (Okabe et al., 1993), a lots of new hydrazone compounds has been synthesized in our laboratory (Shan et al., 2002, 2003). As part of the ongoing investigation on hydrazone, we present here the crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The N2═C3 bond distance of 1.284 (2) Å clearly indicates the double bond character for the Schiff base compound. The molecule adopts an E configuration, the carbazate and furan moieties located on the opposite positions of the N2═C3 bond; similar to that found in a related structure (Chen et al., 2007). The dithiocarbazate moiety is well co-planar, the maximum atomic deviation being 0.037 (1) Å (S2), and the dithiocarbazate mean plane is slightly twisted with respect to the furan plane by a smaller dihedral angle of 5.2 (1)°. This shows the whole molecule is nearly co-planar.

Inter-molecular N—H···S hydrogen bonding links adjacent molecules to form the centro-symmetric supra-molecular dimmer (Fig. 1 and Table 1).

Experimental

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and furfural (0.96 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Yellow crystalline product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were obtained by recrystallization from an ethanol solution.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in the riding mode, Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) -x, 1 - y, 1 - z].

Crystal data

C7H8N2OS2 Z = 2
Mr = 200.27 F000 = 208
Triclinic, P1 Dx = 1.448 Mg m3
Hall symbol: -P 1 Melting point = 414–416 K
a = 4.0866 (8) Å Mo Kα radiation λ = 0.71073 Å
b = 8.8698 (12) Å Cell parameters from 2276 reflections
c = 12.8453 (15) Å θ = 2.0–25.0º
α = 93.970 (14)º µ = 0.53 mm1
β = 91.856 (12)º T = 294 (2) K
γ = 98.293 (12)º Prism, yellow
V = 459.21 (12) Å3 0.34 × 0.28 × 0.20 mm

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1608 independent reflections
Radiation source: fine-focus sealed tube 1349 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.030
Detector resolution: 10.0 pixels mm-1 θmax = 25.2º
T = 294(2) K θmin = 1.6º
ω scans h = −4→4
Absorption correction: multi-scan(ABSCOR; Higashi, 1995) k = −10→10
Tmin = 0.850, Tmax = 0.950 l = −15→14
4733 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.096   w = 1/[σ2(Fo2) + (0.0598P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max = 0.001
1608 reflections Δρmax = 0.19 e Å3
110 parameters Δρmin = −0.28 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20815 (13) 0.27619 (5) 0.50863 (4) 0.0516 (2)
S2 0.38692 (13) 0.20142 (5) 0.28541 (4) 0.0506 (2)
N1 0.1859 (4) 0.45265 (16) 0.35473 (12) 0.0464 (4)
H1 0.1098 0.5149 0.3988 0.056*
N2 0.2353 (4) 0.49265 (16) 0.25394 (11) 0.0449 (4)
O1 0.3206 (4) 0.60245 (14) 0.05809 (10) 0.0553 (4)
C1 0.2537 (4) 0.3197 (2) 0.38518 (14) 0.0407 (4)
C2 0.4665 (5) 0.0393 (2) 0.35393 (17) 0.0557 (5)
H2A 0.6311 0.0720 0.4090 0.084*
H2B 0.5448 −0.0343 0.3062 0.084*
H2C 0.2659 −0.0063 0.3831 0.084*
C3 0.1483 (5) 0.6216 (2) 0.23454 (16) 0.0502 (5)
H3 0.0577 0.6772 0.2875 0.060*
C4 0.1847 (5) 0.6835 (2) 0.13501 (16) 0.0481 (5)
C5 0.1076 (7) 0.8131 (3) 0.09881 (19) 0.0685 (6)
H5 0.0139 0.8886 0.1360 0.082*
C6 0.1961 (6) 0.8126 (3) −0.00661 (18) 0.0673 (6)
H6 0.1705 0.8873 −0.0523 0.081*
C7 0.3227 (6) 0.6849 (3) −0.02770 (17) 0.0608 (6)
H7 0.4018 0.6557 −0.0920 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0714 (4) 0.0502 (3) 0.0359 (3) 0.0125 (2) 0.0107 (2) 0.0105 (2)
S2 0.0694 (4) 0.0482 (3) 0.0378 (3) 0.0171 (2) 0.0114 (2) 0.0072 (2)
N1 0.0681 (10) 0.0401 (8) 0.0326 (9) 0.0104 (7) 0.0108 (7) 0.0056 (7)
N2 0.0614 (10) 0.0393 (8) 0.0352 (9) 0.0078 (7) 0.0060 (7) 0.0077 (7)
O1 0.0837 (10) 0.0443 (7) 0.0418 (8) 0.0168 (7) 0.0145 (7) 0.0112 (6)
C1 0.0456 (10) 0.0405 (9) 0.0345 (10) 0.0013 (8) 0.0024 (8) 0.0026 (8)
C2 0.0701 (14) 0.0467 (11) 0.0534 (13) 0.0161 (9) 0.0056 (10) 0.0087 (9)
C3 0.0655 (13) 0.0478 (11) 0.0390 (11) 0.0114 (9) 0.0094 (9) 0.0051 (9)
C4 0.0631 (12) 0.0419 (10) 0.0419 (11) 0.0129 (9) 0.0072 (9) 0.0076 (8)
C5 0.0988 (17) 0.0596 (13) 0.0577 (14) 0.0391 (12) 0.0168 (12) 0.0165 (11)
C6 0.0947 (17) 0.0596 (13) 0.0544 (15) 0.0224 (12) 0.0054 (12) 0.0278 (11)
C7 0.0875 (16) 0.0583 (12) 0.0393 (12) 0.0115 (11) 0.0109 (10) 0.0173 (9)

Geometric parameters (Å, °)

S1—C1 1.6675 (18) C2—H2B 0.9600
S2—C1 1.7500 (19) C2—H2C 0.9600
S2—C2 1.800 (2) C3—C4 1.430 (3)
N1—N2 1.379 (2) C3—H3 0.9300
N1—C1 1.331 (2) C4—C5 1.344 (3)
N1—H1 0.8600 C5—C6 1.413 (3)
N2—C3 1.284 (2) C5—H5 0.9300
O1—C4 1.361 (2) C6—C7 1.327 (4)
O1—C7 1.364 (2) C6—H6 0.9300
C2—H2A 0.9600 C7—H7 0.9300
C1—S2—C2 101.98 (9) N2—C3—C4 122.79 (19)
C1—N1—N2 121.34 (16) N2—C3—H3 118.6
C1—N1—H1 119.3 C4—C3—H3 118.6
N2—N1—H1 119.3 C5—C4—O1 109.57 (17)
C3—N2—N1 114.59 (16) C5—C4—C3 132.1 (2)
C4—O1—C7 106.45 (15) O1—C4—C3 118.37 (16)
N1—C1—S1 120.76 (14) C4—C5—C6 106.8 (2)
N1—C1—S2 114.05 (13) C4—C5—H5 126.6
S1—C1—S2 125.19 (11) C6—C5—H5 126.6
S2—C2—H2A 109.5 C7—C6—C5 106.67 (19)
S2—C2—H2B 109.5 C7—C6—H6 126.7
H2A—C2—H2B 109.5 C5—C6—H6 126.7
S2—C2—H2C 109.5 C6—C7—O1 110.5 (2)
H2A—C2—H2C 109.5 C6—C7—H7 124.8
H2B—C2—H2C 109.5 O1—C7—H7 124.8
C1—N1—N2—C3 177.62 (17) N2—C3—C4—C5 179.2 (2)
N2—N1—C1—S1 177.32 (12) N2—C3—C4—O1 −0.7 (3)
N2—N1—C1—S2 −3.0 (2) O1—C4—C5—C6 0.7 (3)
C2—S2—C1—N1 178.23 (14) C3—C4—C5—C6 −179.2 (2)
C2—S2—C1—S1 −2.13 (15) C4—C5—C6—C7 −0.5 (3)
N1—N2—C3—C4 179.09 (17) C5—C6—C7—O1 0.1 (3)
C7—O1—C4—C5 −0.6 (2) C4—O1—C7—C6 0.3 (3)
C7—O1—C4—C3 179.25 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.86 2.65 3.4892 (17) 165

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2417).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ.22, 2014–2017.
  7. Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136. [DOI] [PubMed]
  11. Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808012506/xu2417sup1.cif

e-64-0o970-sup1.cif (14.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808012506/xu2417Isup2.hkl

e-64-0o970-Isup2.hkl (77.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES