Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 10;64(Pt 6):o1022–o1023. doi: 10.1107/S160053680801297X

(E)-2-[1-(1-Benzothio­phen-3-yl)ethyl­idene]hydrazinecarbothio­amide methanol hemisolvate

Safa’a Fares Kayed a, Yang Farina a,*, Mohammad Kassim a, Jim Simpson b
PMCID: PMC2961618  PMID: 21202547

Abstract

The asymmetric unit of the title compound, C11H11N3S2·0.5CH4O, contains four thio­semicarbazone mol­ecules and two methanol solvent mol­ecules. Each hydrazinecarbothio­amide mol­ecule adopts an E configuration with respect to the C=N double bond and is stabilized by an intra­molecular N—H⋯N hydrogen bond, resulting in an S(5) ring motif. In the crystal structure, an extensive network of N—H⋯O, N—H⋯N, O—H⋯S and N—H⋯S hydrogen bonds and weak C—H⋯O, C—H⋯N and C—H⋯S contacts together with an S⋯S [3.5958 (14) Å] and a C—H⋯π inter­action form a three-dimensional network.

Related literature

For related structures, see: de Lima et al. (2002); Işık et al. (2006). For reference structural data, see: Allen et al. (1987). For graph-set analysis of hydrogen bonding, see: Bernstein et al., (1995).graphic file with name e-64-o1022-scheme1.jpg

Experimental

Crystal data

  • C11H11N3S2·0.5CH4O

  • M r = 265.38

  • Monoclinic, Inline graphic

  • a = 18.9438 (12) Å

  • b = 17.7076 (11) Å

  • c = 15.4145 (10) Å

  • β = 107.238 (3)°

  • V = 4938.5 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 92 (2) K

  • 0.31 × 0.20 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.777, T max = 0.947

  • 65034 measured reflections

  • 10871 independent reflections

  • 8171 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.203

  • S = 1.03

  • 10871 reflections

  • 655 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.71 e Å−3

  • Δρmin = −2.31 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000; molecular graphics: SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801297X/hb2725sup1.cif

e-64-o1022-sup1.cif (32.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801297X/hb2725Isup2.hkl

e-64-o1022-Isup2.hkl (531.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3N2⋯N1A 0.843 (10) 2.29 (4) 2.641 (4) 105 (3)
N3B—H3N3⋯N1B 0.838 (10) 2.21 (4) 2.617 (4) 110 (3)
N3C—H3N5⋯N1C 0.842 (10) 2.22 (5) 2.543 (4) 102 (4)
N3D—H3N7⋯N1D 0.841 (10) 2.29 (5) 2.643 (4) 105 (4)
N3A—H3N1⋯S2Bi 0.839 (10) 2.500 (14) 3.325 (3) 168 (4)
N3B—H3N4⋯S2Aii 0.839 (10) 2.62 (2) 3.367 (3) 149 (4)
N2B—H2NB⋯S2Aiii 0.839 (10) 2.585 (13) 3.412 (3) 169 (4)
N3C—H3N6⋯S2Aiv 0.840 (10) 2.76 (4) 3.352 (3) 129 (4)
N3C—H3N6⋯N3Bv 0.840 (10) 2.72 (3) 3.468 (5) 149 (5)
N2C—H2NC⋯S2Cvi 0.842 (10) 2.60 (2) 3.392 (3) 158 (4)
N3D—H3N8⋯S2Aiv 0.840 (10) 2.738 (15) 3.563 (3) 168 (4)
N3D—H3N7⋯O1S 0.841 (10) 2.26 (3) 2.967 (6) 142 (4)
O1S—H1S⋯S2Cvi 0.84 2.64 3.471 (5) 169
O2S—H2S⋯S2Dvii 0.84 2.97 3.389 (6) 113
C3A—H3A⋯S2Aiv 0.95 2.97 3.762 (4) 142
C10A—H10A⋯S2Bviii 0.98 2.91 3.613 (3) 129
C2B—H2B⋯O1Six 0.95 2.36 3.282 (7) 163
C2S—H2S1⋯N2Dvii 0.98 2.74 3.266 (9) 115
C10B—H10F⋯Cgx 0.98 2.91 3.594 (4) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic. Cg is the centroid of C1B–C6B.

Acknowledgments

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grant UKM-ST-01-FRGS0022-2006. We also thank the University of Otago for the purchase of the diffractometer.

supplementary crystallographic information

Comment

Structures similar to the title compound, (I), have been reported including the thiosemicarbazone derived from 2-acetylthiophene (Lima et al., 2002); and a pryazoline derivative (Işık et al., 2006).

The asymmetric unit of (I) contains four molecules, labeled A—D (Figs 1—4) and two methanol solvate molecules, with the complete assemblage shown in Fig. 5. Each molecule adopts an E configuration with respect to the C=N bond and bond distances and angles are normal (Allen et al., 1987). Intramolecular N3—H···N1 hydrogen bonds (Table 1) form between each of the the NH2 groups and the imine N atoms generating S(5) ring motifs (Bernstein et al., 1995). These contribute to the planarity of the molecules.

In the crystal of (I), N2—H2···S2 hydrogen bonds generate centrosymmetric R22(8) rings in molecules A—C. For molecule D, C2S—H2S1···S2D hydrogen bonding to a methanol solvate within the asymmetric unit obviates such an interaction. Other N—H···O, N—H···N, O—H···S and N—H···S hydrogen bonds together with weak C—H···O, C—H···N and C—H···S contacts, an S···S interaction (d(S1D···S1Bi) = 3.5958 (14) Å; i = x, 3/2 - y, -1/2 + z) and a C10B—H10F···Cgii interaction (ii = -x, 1 - y, -z; Cg is the centroid of the C1B···C6B ring) form a complex three dimensional network (Fig 6).

Experimental

A 1:1 mixture of 2-acetylbenzothiophene and thiosemicarbazide was heated under reflux in ethanol for 2 h. The solid product which separated upon cooling was filtered and recrystallized from a 1:1 mixture of acetonitrile and methanol to afford colourless, blocks of (I) in 68% yield (m.p. 483–485 K).

Refinement

The C-bound H atoms were placed geometrically (C—H = 0.95-0.98Å) and refined as riding with Uiso=1.2Ueq(C) of 1.5Ueq(methyl C).

The N-bound H atoms were located in a difference map and refined with a distance restraint of N—H = 0.84 (1) Å, and with Uiso(H) = 1.2Ueq(N) (carrier).

The highest residual electron density peak is 0.07 Å from O2S and the deepest hole is 0.04Å from C2S suggesting the possibility of unresolved disorder in this methanol solvate molecule.

Figures

Fig. 1.

Fig. 1.

The structure of molecule A in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

The structure of molecule B in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.

Fig. 3.

Fig. 3.

The structure of molecule C in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.

Fig. 4.

Fig. 4.

The structure of molecule D in (I) showing 50% probability displacement ellipsoids for the non-H atoms. The intramolecular N—H···N hydrogen bond is drawn as a dashed line.

Fig. 5.

Fig. 5.

The asymmetric unit of (I) with intermolecular hydrogen bonds drawn as dashed lines.

Fig. 6.

Fig. 6.

Crystal packing of (I) viewed down the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C11H11N3S2·0.5(CH4O) F000 = 2224
Mr = 265.38 Dx = 1.428 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8980 reflections
a = 18.9438 (12) Å θ = 2.3–25.6º
b = 17.7076 (11) Å µ = 0.42 mm1
c = 15.4145 (10) Å T = 92 (2) K
β = 107.238 (3)º Block, colourless
V = 4938.5 (5) Å3 0.31 × 0.20 × 0.13 mm
Z = 16

Data collection

Bruker APEXII CCD area-detector diffractometer 10871 independent reflections
Radiation source: fine-focus sealed tube 8171 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.086
T = 92(2) K θmax = 27.1º
ω scans θmin = 1.1º
Absorption correction: multi-scan(SADABS; Bruker, 2006) h = −24→24
Tmin = 0.777, Tmax = 0.947 k = −22→22
65034 measured reflections l = −19→18

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.203   w = 1/[σ2(Fo2) + (0.1068P)2 + 8.4506P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
10871 reflections Δρmax = 1.71 e Å3
655 parameters Δρmin = −2.30 e Å3
12 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1A 0.40620 (18) 0.50684 (18) 0.8528 (2) 0.0201 (7)
C2A 0.36631 (19) 0.44650 (19) 0.8029 (2) 0.0241 (7)
H2A 0.3746 0.4300 0.7480 0.029*
C3A 0.3144 (2) 0.41176 (19) 0.8364 (2) 0.0254 (7)
H3A 0.2872 0.3700 0.8046 0.030*
C4A 0.3010 (2) 0.4368 (2) 0.9163 (3) 0.0263 (8)
H4A 0.2643 0.4125 0.9370 0.032*
C5A 0.3402 (2) 0.4960 (2) 0.9651 (3) 0.0252 (7)
H5A 0.3309 0.5124 1.0193 0.030*
C6A 0.39438 (18) 0.53217 (18) 0.9341 (2) 0.0212 (7)
S1A 0.47650 (5) 0.55720 (5) 0.82797 (6) 0.0235 (2)
C7A 0.44278 (18) 0.59319 (19) 0.9744 (2) 0.0224 (7)
H7A 0.4422 0.6176 1.0291 0.027*
C8A 0.48976 (18) 0.61239 (18) 0.9258 (2) 0.0200 (7)
C9A 0.54827 (18) 0.66957 (18) 0.9473 (2) 0.0207 (7)
C10A 0.56188 (18) 0.71682 (19) 1.0314 (2) 0.0223 (7)
H10A 0.6108 0.7051 1.0729 0.033*
H10B 0.5241 0.7058 1.0614 0.033*
H10C 0.5596 0.7704 1.0150 0.033*
N1A 0.58542 (15) 0.67430 (16) 0.8893 (2) 0.0213 (6)
N2A 0.64370 (16) 0.72396 (16) 0.9091 (2) 0.0211 (6)
H2NA 0.659 (2) 0.743 (2) 0.9613 (13) 0.025*
C11A 0.67880 (18) 0.73726 (18) 0.8465 (2) 0.0194 (7)
S2A 0.75517 (5) 0.79377 (5) 0.87472 (6) 0.02159 (19)
N3A 0.65198 (17) 0.70631 (19) 0.7655 (2) 0.0261 (6)
H3N1 0.676 (2) 0.714 (2) 0.729 (2) 0.031*
H3N2 0.6187 (17) 0.6733 (18) 0.758 (3) 0.031*
C1B 0.1144 (2) 0.9732 (2) 0.6666 (2) 0.0259 (7)
C2B 0.1682 (2) 1.0138 (2) 0.7312 (3) 0.0377 (10)
H2B 0.1676 1.0165 0.7926 0.045*
C3B 0.2225 (2) 1.0503 (2) 0.7030 (3) 0.0347 (9)
H3B 0.2594 1.0787 0.7458 0.042*
C4B 0.2239 (2) 1.0461 (2) 0.6135 (3) 0.0295 (8)
H4B 0.2614 1.0720 0.5959 0.035*
C5B 0.1714 (2) 1.0047 (2) 0.5495 (3) 0.0267 (8)
H5B 0.1730 1.0015 0.4886 0.032*
C6B 0.11558 (18) 0.96745 (18) 0.5761 (2) 0.0213 (7)
S1B 0.04048 (5) 0.92419 (5) 0.68465 (6) 0.0294 (2)
C7B 0.05600 (19) 0.92149 (19) 0.5224 (2) 0.0227 (7)
H7B 0.0484 0.9107 0.4600 0.027*
C8B 0.01121 (18) 0.89489 (18) 0.5715 (2) 0.0203 (7)
C9B −0.05345 (18) 0.84574 (18) 0.5407 (2) 0.0217 (7)
C10B −0.0764 (2) 0.8167 (2) 0.4454 (2) 0.0269 (8)
H10D −0.0763 0.7614 0.4461 0.040*
H10E −0.0417 0.8349 0.4138 0.040*
H10F −0.1262 0.8349 0.4137 0.040*
N1B −0.08527 (15) 0.83003 (16) 0.6022 (2) 0.0212 (6)
N2B −0.14681 (16) 0.78420 (16) 0.5770 (2) 0.0216 (6)
H2NB −0.166 (2) 0.768 (2) 0.5243 (13) 0.026*
C11B −0.17783 (18) 0.76294 (19) 0.6424 (2) 0.0202 (7)
S2B −0.25346 (5) 0.70679 (5) 0.61499 (6) 0.0227 (2)
N3B −0.14553 (16) 0.78669 (17) 0.7263 (2) 0.0233 (6)
H3N3 −0.1059 (13) 0.811 (2) 0.735 (3) 0.028*
H3N4 −0.165 (2) 0.770 (2) 0.765 (2) 0.028*
C1C 0.3583 (2) 0.7371 (2) 0.6860 (2) 0.0258 (7)
C2C 0.4354 (2) 0.7437 (2) 0.7138 (3) 0.0297 (8)
H2C 0.4661 0.7002 0.7229 0.036*
C3C 0.4653 (2) 0.8154 (2) 0.7275 (3) 0.0323 (9)
H3C 0.5175 0.8214 0.7466 0.039*
C4C 0.4199 (2) 0.8795 (2) 0.7138 (3) 0.0351 (9)
H4C 0.4419 0.9281 0.7243 0.042*
C5C 0.3439 (2) 0.8733 (2) 0.6853 (3) 0.0351 (9)
H5C 0.3138 0.9172 0.6760 0.042*
C6C 0.3117 (2) 0.8011 (2) 0.6700 (2) 0.0266 (8)
S1C 0.30752 (5) 0.65375 (5) 0.66624 (7) 0.0281 (2)
C7C 0.2349 (2) 0.7803 (2) 0.6387 (3) 0.0287 (8)
H7C 0.1955 0.8158 0.6234 0.034*
C8C 0.2248 (2) 0.70426 (19) 0.6336 (2) 0.0244 (7)
C9C 0.1548 (2) 0.6635 (2) 0.6066 (2) 0.0258 (7)
C10C 0.0836 (2) 0.7064 (2) 0.5745 (3) 0.0319 (9)
H10G 0.0759 0.7230 0.5117 0.048*
H10H 0.0857 0.7506 0.6135 0.048*
H10I 0.0426 0.6737 0.5773 0.048*
N1C 0.16139 (17) 0.59049 (17) 0.6156 (2) 0.0297 (7)
N2C 0.09860 (18) 0.54666 (18) 0.5948 (2) 0.0346 (8)
H2NC 0.0583 (14) 0.559 (3) 0.556 (3) 0.042*
C11C 0.1060 (2) 0.4744 (2) 0.6250 (3) 0.0298 (8)
S2C 0.03402 (6) 0.41383 (6) 0.60223 (8) 0.0448 (3)
N3C 0.17357 (19) 0.45564 (18) 0.6749 (2) 0.0322 (8)
H3N5 0.2098 (18) 0.485 (2) 0.688 (3) 0.050 (15)*
H3N6 0.184 (3) 0.4118 (12) 0.696 (3) 0.051 (15)*
C1D 0.1294 (2) 0.7575 (2) 0.3394 (3) 0.0292 (8)
C2D 0.0537 (2) 0.7729 (3) 0.3080 (3) 0.0398 (10)
H2D 0.0181 0.7340 0.3021 0.048*
C3D 0.0326 (3) 0.8473 (3) 0.2858 (3) 0.0445 (11)
H3D −0.0184 0.8593 0.2636 0.053*
C4D 0.0844 (3) 0.9040 (3) 0.2953 (3) 0.0412 (10)
H4D 0.0682 0.9543 0.2798 0.049*
C5D 0.1592 (2) 0.8893 (2) 0.3268 (3) 0.0347 (9)
H5D 0.1940 0.9291 0.3334 0.042*
C6D 0.1832 (2) 0.8146 (2) 0.3492 (2) 0.0277 (8)
S1D 0.16977 (5) 0.66977 (5) 0.37222 (7) 0.0311 (2)
C7D 0.2567 (2) 0.7850 (2) 0.3818 (2) 0.0272 (8)
H7D 0.3000 0.8149 0.3917 0.033*
C8D 0.2576 (2) 0.7092 (2) 0.3971 (2) 0.0252 (7)
C9D 0.32188 (19) 0.6605 (2) 0.4331 (2) 0.0245 (7)
C10D 0.3983 (2) 0.6910 (2) 0.4466 (3) 0.0341 (9)
H10J 0.4262 0.6885 0.5112 0.051*
H10K 0.3951 0.7436 0.4261 0.051*
H10L 0.4234 0.6608 0.4113 0.051*
N1D 0.30772 (17) 0.59253 (17) 0.4530 (2) 0.0291 (7)
N2D 0.36755 (19) 0.54664 (19) 0.4909 (3) 0.0376 (8)
H2ND 0.4088 (15) 0.560 (3) 0.486 (4) 0.060 (17)*
C11D 0.3565 (2) 0.4790 (2) 0.5254 (3) 0.0313 (8)
S2D 0.43168 (7) 0.42374 (7) 0.57328 (9) 0.0476 (3)
N3D 0.28874 (19) 0.45965 (18) 0.5210 (2) 0.0317 (7)
H3N7 0.2536 (17) 0.489 (2) 0.496 (3) 0.038*
H3N8 0.284 (3) 0.4170 (13) 0.542 (3) 0.038 (13)*
O1S 0.1306 (3) 0.4894 (3) 0.4258 (4) 0.0888 (14)
H1S 0.0944 0.5187 0.4186 0.133*
C1S 0.1058 (5) 0.4166 (4) 0.4115 (5) 0.087 (2)
H1S1 0.1150 0.3907 0.4700 0.130*
H1S2 0.1321 0.3903 0.3743 0.130*
H1S3 0.0527 0.4166 0.3799 0.130*
O2S 0.5431 (3) 0.5968 (3) 0.6341 (4) 0.0867 (12)
H2S 0.5637 0.6279 0.6084 0.130*
C2S 0.5875 (4) 0.5453 (4) 0.6686 (5) 0.0867 (12)
H2S1 0.5690 0.4972 0.6390 0.130*
H2S2 0.5925 0.5417 0.7336 0.130*
H2S3 0.6357 0.5565 0.6604 0.130*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0172 (16) 0.0190 (15) 0.0232 (16) 0.0036 (12) 0.0044 (13) 0.0020 (13)
C2A 0.0233 (18) 0.0233 (17) 0.0233 (17) 0.0026 (13) 0.0034 (14) 0.0008 (14)
C3A 0.0215 (17) 0.0193 (16) 0.0299 (18) 0.0008 (13) −0.0009 (14) 0.0008 (14)
C4A 0.0233 (18) 0.0225 (17) 0.0321 (19) −0.0027 (14) 0.0066 (15) 0.0042 (14)
C5A 0.0221 (17) 0.0248 (17) 0.0305 (18) −0.0023 (13) 0.0106 (14) −0.0021 (14)
C6A 0.0184 (16) 0.0195 (15) 0.0250 (17) 0.0019 (13) 0.0051 (13) 0.0008 (13)
S1A 0.0239 (4) 0.0254 (4) 0.0230 (4) −0.0015 (3) 0.0099 (3) −0.0025 (3)
C7A 0.0177 (16) 0.0219 (16) 0.0264 (17) −0.0003 (13) 0.0048 (13) −0.0024 (14)
C8A 0.0181 (16) 0.0184 (15) 0.0220 (16) 0.0021 (12) 0.0036 (13) 0.0009 (13)
C9A 0.0183 (16) 0.0207 (15) 0.0246 (17) 0.0035 (13) 0.0087 (13) 0.0047 (13)
C10A 0.0161 (16) 0.0240 (16) 0.0264 (17) −0.0022 (13) 0.0058 (13) −0.0026 (14)
N1A 0.0154 (13) 0.0234 (14) 0.0245 (14) −0.0005 (11) 0.0052 (11) 0.0016 (11)
N2A 0.0171 (14) 0.0252 (14) 0.0227 (14) −0.0016 (11) 0.0084 (11) 0.0004 (12)
C11A 0.0165 (15) 0.0199 (15) 0.0217 (16) 0.0059 (12) 0.0055 (12) 0.0045 (13)
S2A 0.0189 (4) 0.0245 (4) 0.0226 (4) −0.0021 (3) 0.0080 (3) 0.0015 (3)
N3A 0.0196 (15) 0.0372 (17) 0.0234 (15) −0.0058 (13) 0.0094 (12) −0.0016 (13)
C1B 0.0258 (18) 0.0249 (17) 0.0278 (18) −0.0029 (14) 0.0094 (14) −0.0011 (14)
C2B 0.041 (2) 0.042 (2) 0.030 (2) −0.0145 (19) 0.0110 (18) −0.0093 (18)
C3B 0.030 (2) 0.033 (2) 0.040 (2) −0.0115 (16) 0.0085 (17) −0.0105 (17)
C4B 0.0217 (18) 0.0255 (18) 0.044 (2) −0.0058 (14) 0.0135 (16) −0.0048 (16)
C5B 0.0233 (18) 0.0245 (17) 0.035 (2) −0.0019 (14) 0.0126 (15) −0.0027 (15)
C6B 0.0189 (16) 0.0187 (15) 0.0256 (17) 0.0002 (12) 0.0055 (13) −0.0002 (13)
S1B 0.0309 (5) 0.0340 (5) 0.0245 (4) −0.0113 (4) 0.0102 (4) −0.0034 (4)
C7B 0.0190 (16) 0.0217 (16) 0.0270 (17) −0.0013 (13) 0.0061 (13) −0.0008 (14)
C8B 0.0190 (16) 0.0177 (15) 0.0236 (16) −0.0005 (12) 0.0051 (13) 0.0003 (13)
C9B 0.0186 (16) 0.0203 (16) 0.0256 (17) 0.0032 (13) 0.0056 (13) 0.0015 (13)
C10B 0.0220 (18) 0.0335 (19) 0.0258 (18) −0.0078 (15) 0.0080 (14) −0.0050 (15)
N1B 0.0161 (14) 0.0225 (14) 0.0252 (14) −0.0016 (11) 0.0068 (11) 0.0015 (11)
N2B 0.0172 (14) 0.0250 (14) 0.0227 (14) −0.0032 (11) 0.0061 (11) −0.0004 (12)
C11B 0.0160 (15) 0.0221 (16) 0.0228 (16) 0.0048 (12) 0.0062 (12) 0.0022 (13)
S2B 0.0205 (4) 0.0264 (4) 0.0220 (4) −0.0052 (3) 0.0075 (3) −0.0001 (3)
N3B 0.0171 (14) 0.0313 (16) 0.0217 (14) −0.0048 (12) 0.0060 (11) −0.0023 (12)
C1C 0.0257 (18) 0.0245 (17) 0.0251 (17) −0.0020 (14) 0.0045 (14) 0.0001 (14)
C2C 0.0250 (19) 0.0319 (19) 0.0292 (19) −0.0023 (15) 0.0036 (15) −0.0008 (16)
C3C 0.0253 (19) 0.039 (2) 0.031 (2) −0.0068 (16) 0.0054 (16) 0.0047 (17)
C4C 0.038 (2) 0.0288 (19) 0.036 (2) −0.0118 (17) 0.0081 (17) 0.0033 (17)
C5C 0.038 (2) 0.0220 (18) 0.042 (2) −0.0034 (16) 0.0062 (18) 0.0031 (16)
C6C 0.0262 (19) 0.0250 (17) 0.0275 (18) −0.0027 (14) 0.0061 (14) 0.0033 (14)
S1C 0.0214 (4) 0.0215 (4) 0.0368 (5) 0.0010 (3) 0.0014 (4) −0.0024 (4)
C7C 0.0283 (19) 0.0264 (18) 0.0300 (19) −0.0002 (15) 0.0065 (15) 0.0014 (15)
C8C 0.0240 (18) 0.0226 (17) 0.0244 (17) 0.0028 (14) 0.0035 (14) 0.0041 (14)
C9C 0.0237 (18) 0.0235 (17) 0.0267 (18) 0.0004 (14) 0.0019 (14) 0.0020 (14)
C10C 0.0204 (18) 0.0278 (19) 0.041 (2) 0.0020 (14) −0.0009 (16) 0.0064 (16)
N1C 0.0202 (15) 0.0247 (15) 0.0375 (18) −0.0022 (12) −0.0019 (13) 0.0025 (13)
N2C 0.0241 (17) 0.0233 (15) 0.045 (2) −0.0010 (13) −0.0070 (14) 0.0090 (14)
C11C 0.030 (2) 0.0226 (17) 0.0310 (19) 0.0027 (15) 0.0001 (15) 0.0013 (15)
S2C 0.0349 (6) 0.0298 (5) 0.0523 (7) −0.0090 (4) −0.0136 (5) 0.0164 (5)
N3C 0.0283 (17) 0.0222 (16) 0.0359 (18) 0.0032 (13) −0.0060 (14) 0.0041 (14)
C1D 0.028 (2) 0.0323 (19) 0.0278 (18) 0.0034 (15) 0.0088 (15) 0.0008 (15)
C2D 0.027 (2) 0.054 (3) 0.040 (2) 0.0070 (19) 0.0124 (17) 0.008 (2)
C3D 0.036 (2) 0.057 (3) 0.042 (2) 0.021 (2) 0.0135 (19) 0.009 (2)
C4D 0.050 (3) 0.037 (2) 0.043 (2) 0.016 (2) 0.023 (2) 0.0097 (19)
C5D 0.043 (2) 0.0285 (19) 0.036 (2) 0.0057 (17) 0.0164 (18) 0.0034 (17)
C6D 0.030 (2) 0.0279 (18) 0.0256 (18) 0.0026 (15) 0.0094 (15) 0.0015 (15)
S1D 0.0210 (5) 0.0279 (5) 0.0415 (5) −0.0019 (4) 0.0045 (4) 0.0037 (4)
C7D 0.0275 (19) 0.0286 (18) 0.0246 (18) 0.0000 (14) 0.0064 (14) 0.0024 (14)
C8D 0.0223 (17) 0.0237 (17) 0.0275 (18) −0.0039 (14) 0.0041 (14) −0.0005 (14)
C9D 0.0198 (17) 0.0278 (18) 0.0239 (17) −0.0037 (14) 0.0033 (13) 0.0030 (14)
C10D 0.0218 (19) 0.0304 (19) 0.046 (2) −0.0019 (15) 0.0044 (17) 0.0099 (18)
N1D 0.0234 (16) 0.0246 (15) 0.0361 (17) 0.0020 (12) 0.0038 (13) 0.0047 (13)
N2D 0.0237 (17) 0.0310 (17) 0.057 (2) 0.0019 (14) 0.0092 (16) 0.0149 (16)
C11D 0.032 (2) 0.0236 (18) 0.036 (2) 0.0032 (15) 0.0071 (16) 0.0038 (16)
S2D 0.0374 (6) 0.0426 (6) 0.0628 (8) 0.0165 (5) 0.0150 (5) 0.0240 (6)
N3D 0.0286 (18) 0.0218 (15) 0.045 (2) 0.0031 (13) 0.0112 (15) 0.0087 (14)
O1S 0.089 (4) 0.094 (4) 0.089 (3) 0.009 (3) 0.035 (3) −0.003 (3)
C1S 0.111 (6) 0.074 (5) 0.080 (5) −0.010 (4) 0.034 (4) −0.018 (4)
O2S 0.099 (3) 0.064 (2) 0.097 (3) 0.013 (2) 0.030 (2) −0.002 (2)
C2S 0.099 (3) 0.064 (2) 0.097 (3) 0.013 (2) 0.030 (2) −0.002 (2)

Geometric parameters (Å, °)

C1A—C2A 1.400 (5) C3C—H3C 0.9500
C1A—C6A 1.410 (5) C4C—C5C 1.379 (6)
C1A—S1A 1.737 (3) C4C—H4C 0.9500
C2A—C3A 1.384 (5) C5C—C6C 1.406 (5)
C2A—H2A 0.9500 C5C—H5C 0.9500
C3A—C4A 1.400 (5) C6C—C7C 1.439 (5)
C3A—H3A 0.9500 S1C—C8C 1.744 (4)
C4A—C5A 1.373 (5) C7C—C8C 1.359 (5)
C4A—H4A 0.9500 C7C—H7C 0.9500
C5A—C6A 1.407 (5) C8C—C9C 1.458 (5)
C5A—H5A 0.9500 C9C—N1C 1.303 (5)
C6A—C7A 1.434 (5) C9C—C10C 1.499 (5)
S1A—C8A 1.751 (3) C10C—H10G 0.9800
C7A—C8A 1.366 (5) C10C—H10H 0.9800
C7A—H7A 0.9500 C10C—H10I 0.9800
C8A—C9A 1.465 (5) N1C—N2C 1.376 (4)
C9A—N1A 1.294 (4) N2C—C11C 1.355 (5)
C9A—C10A 1.501 (5) N2C—H2NC 0.842 (10)
C10A—H10A 0.9800 C11C—N3C 1.326 (5)
C10A—H10B 0.9800 C11C—S2C 1.687 (4)
C10A—H10C 0.9800 N3C—H3N5 0.842 (10)
N1A—N2A 1.373 (4) N3C—H3N6 0.840 (10)
N2A—C11A 1.346 (4) C1D—C2D 1.396 (5)
N2A—H2NA 0.841 (10) C1D—C6D 1.412 (5)
C11A—N3A 1.319 (4) C1D—S1D 1.740 (4)
C11A—S2A 1.706 (3) C2D—C3D 1.390 (6)
N3A—H3N1 0.839 (10) C2D—H2D 0.9500
N3A—H3N2 0.843 (10) C3D—C4D 1.382 (7)
C1B—C2B 1.395 (5) C3D—H3D 0.9500
C1B—C6B 1.405 (5) C4D—C5D 1.379 (6)
C1B—S1B 1.739 (4) C4D—H4D 0.9500
C2B—C3B 1.390 (6) C5D—C6D 1.408 (5)
C2B—H2B 0.9500 C5D—H5D 0.9500
C3B—C4B 1.390 (6) C6D—C7D 1.432 (5)
C3B—H3B 0.9500 S1D—C8D 1.739 (4)
C4B—C5B 1.386 (5) S1D—S1Bi 3.5958 (14)
C4B—H4B 0.9500 C7D—C8D 1.362 (5)
C5B—C6B 1.407 (5) C7D—H7D 0.9500
C5B—H5B 0.9500 C8D—C9D 1.461 (5)
C6B—C7B 1.438 (5) C9D—N1D 1.290 (5)
S1B—C8B 1.746 (3) C9D—C10D 1.500 (5)
C7B—C8B 1.376 (5) C10D—H10J 0.9800
C7B—H7B 0.9500 C10D—H10K 0.9800
C8B—C9B 1.462 (5) C10D—H10L 0.9800
C9B—N1B 1.296 (5) N1D—N2D 1.376 (4)
C9B—C10B 1.495 (5) N2D—C11D 1.352 (5)
C10B—H10D 0.9800 N2D—H2ND 0.842 (10)
C10B—H10E 0.9800 C11D—N3D 1.311 (5)
C10B—H10F 0.9800 C11D—S2D 1.705 (4)
N1B—N2B 1.379 (4) N3D—H3N7 0.841 (10)
N2B—C11B 1.362 (4) N3D—H3N8 0.840 (10)
N2B—H2NB 0.839 (10) O1S—C1S 1.367 (8)
C11B—N3B 1.325 (4) O1S—H1S 0.8400
C11B—S2B 1.692 (3) C1S—H1S1 0.9800
N3B—H3N3 0.838 (10) C1S—H1S2 0.9800
N3B—H3N4 0.839 (10) C1S—H1S3 0.9800
C1C—C2C 1.399 (5) O2S—C2S 1.248 (8)
C1C—C6C 1.413 (5) O2S—H2S 0.8400
C1C—S1C 1.738 (4) C2S—H2S1 0.9800
C2C—C3C 1.381 (5) C2S—H2S2 0.9800
C2C—H2C 0.9500 C2S—H2S3 0.9800
C3C—C4C 1.401 (6)
C2A—C1A—C6A 121.9 (3) C4C—C3C—H3C 119.5
C2A—C1A—S1A 126.5 (3) C5C—C4C—C3C 121.3 (4)
C6A—C1A—S1A 111.5 (2) C5C—C4C—H4C 119.3
C3A—C2A—C1A 117.5 (3) C3C—C4C—H4C 119.3
C3A—C2A—H2A 121.3 C4C—C5C—C6C 119.0 (4)
C1A—C2A—H2A 121.3 C4C—C5C—H5C 120.5
C2A—C3A—C4A 121.4 (3) C6C—C5C—H5C 120.5
C2A—C3A—H3A 119.3 C5C—C6C—C1C 118.9 (3)
C4A—C3A—H3A 119.3 C5C—C6C—C7C 129.4 (4)
C5A—C4A—C3A 120.9 (3) C1C—C6C—C7C 111.7 (3)
C5A—C4A—H4A 119.5 C1C—S1C—C8C 91.05 (17)
C3A—C4A—H4A 119.5 C8C—C7C—C6C 112.6 (3)
C4A—C5A—C6A 119.5 (3) C8C—C7C—H7C 123.7
C4A—C5A—H5A 120.3 C6C—C7C—H7C 123.7
C6A—C5A—H5A 120.3 C7C—C8C—C9C 127.4 (3)
C5A—C6A—C1A 118.7 (3) C7C—C8C—S1C 113.1 (3)
C5A—C6A—C7A 129.2 (3) C9C—C8C—S1C 119.5 (3)
C1A—C6A—C7A 112.1 (3) N1C—C9C—C8C 114.2 (3)
C1A—S1A—C8A 91.19 (16) N1C—C9C—C10C 125.9 (3)
C8A—C7A—C6A 112.7 (3) C8C—C9C—C10C 119.8 (3)
C8A—C7A—H7A 123.6 C9C—C10C—H10G 109.5
C6A—C7A—H7A 123.6 C9C—C10C—H10H 109.5
C7A—C8A—C9A 128.3 (3) H10G—C10C—H10H 109.5
C7A—C8A—S1A 112.5 (3) C9C—C10C—H10I 109.5
C9A—C8A—S1A 119.1 (3) H10G—C10C—H10I 109.5
N1A—C9A—C8A 114.7 (3) H10H—C10C—H10I 109.5
N1A—C9A—C10A 124.9 (3) C9C—N1C—N2C 119.1 (3)
C8A—C9A—C10A 120.4 (3) C11C—N2C—N1C 117.3 (3)
C9A—C10A—H10A 109.5 C11C—N2C—H2NC 117 (3)
C9A—C10A—H10B 109.5 N1C—N2C—H2NC 124 (3)
H10A—C10A—H10B 109.5 N3C—C11C—N2C 114.8 (3)
C9A—C10A—H10C 109.5 N3C—C11C—S2C 122.9 (3)
H10A—C10A—H10C 109.5 N2C—C11C—S2C 122.3 (3)
H10B—C10A—H10C 109.5 C11C—N3C—H3N5 124 (4)
C9A—N1A—N2A 117.0 (3) C11C—N3C—H3N6 122 (4)
C11A—N2A—N1A 119.2 (3) H3N5—N3C—H3N6 114 (5)
C11A—N2A—H2NA 120 (3) C2D—C1D—C6D 122.1 (4)
N1A—N2A—H2NA 120 (3) C2D—C1D—S1D 126.4 (3)
N3A—C11A—N2A 118.2 (3) C6D—C1D—S1D 111.5 (3)
N3A—C11A—S2A 123.0 (3) C3D—C2D—C1D 117.4 (4)
N2A—C11A—S2A 118.8 (3) C3D—C2D—H2D 121.3
C11A—N3A—H3N1 116 (3) C1D—C2D—H2D 121.3
C11A—N3A—H3N2 119 (3) C4D—C3D—C2D 121.3 (4)
H3N1—N3A—H3N2 124 (4) C4D—C3D—H3D 119.3
C2B—C1B—C6B 121.5 (3) C2D—C3D—H3D 119.3
C2B—C1B—S1B 126.5 (3) C5D—C4D—C3D 121.5 (4)
C6B—C1B—S1B 111.9 (3) C5D—C4D—H4D 119.2
C3B—C2B—C1B 117.9 (4) C3D—C4D—H4D 119.2
C3B—C2B—H2B 121.0 C4D—C5D—C6D 119.2 (4)
C1B—C2B—H2B 121.0 C4D—C5D—H5D 120.4
C2B—C3B—C4B 121.3 (4) C6D—C5D—H5D 120.4
C2B—C3B—H3B 119.4 C5D—C6D—C1D 118.4 (4)
C4B—C3B—H3B 119.4 C5D—C6D—C7D 129.8 (4)
C5B—C4B—C3B 120.9 (4) C1D—C6D—C7D 111.8 (3)
C5B—C4B—H4B 119.5 C8D—S1D—C1D 90.87 (18)
C3B—C4B—H4B 119.5 C8D—S1D—S1Bi 137.93 (13)
C4B—C5B—C6B 118.9 (4) C1D—S1D—S1Bi 92.50 (13)
C4B—C5B—H5B 120.5 C8D—C7D—C6D 112.5 (3)
C6B—C5B—H5B 120.5 C8D—C7D—H7D 123.8
C1B—C6B—C5B 119.3 (3) C6D—C7D—H7D 123.8
C1B—C6B—C7B 111.8 (3) C7D—C8D—C9D 127.8 (3)
C5B—C6B—C7B 128.9 (3) C7D—C8D—S1D 113.3 (3)
C1B—S1B—C8B 91.17 (17) C9D—C8D—S1D 118.8 (3)
C8B—C7B—C6B 112.6 (3) N1D—C9D—C8D 115.6 (3)
C8B—C7B—H7B 123.7 N1D—C9D—C10D 124.3 (3)
C6B—C7B—H7B 123.7 C8D—C9D—C10D 120.1 (3)
C7B—C8B—C9B 128.3 (3) C9D—C10D—H10J 109.5
C7B—C8B—S1B 112.5 (3) C9D—C10D—H10K 109.5
C9B—C8B—S1B 119.2 (3) H10J—C10D—H10K 109.5
N1B—C9B—C8B 114.7 (3) C9D—C10D—H10L 109.5
N1B—C9B—C10B 125.7 (3) H10J—C10D—H10L 109.5
C8B—C9B—C10B 119.7 (3) H10K—C10D—H10L 109.5
C9B—C10B—H10D 109.5 C9D—N1D—N2D 116.7 (3)
C9B—C10B—H10E 109.5 C11D—N2D—N1D 119.1 (3)
H10D—C10B—H10E 109.5 C11D—N2D—H2ND 123 (4)
C9B—C10B—H10F 109.5 N1D—N2D—H2ND 117 (4)
H10D—C10B—H10F 109.5 N3D—C11D—N2D 118.3 (3)
H10E—C10B—H10F 109.5 N3D—C11D—S2D 123.5 (3)
C9B—N1B—N2B 117.2 (3) N2D—C11D—S2D 118.2 (3)
C11B—N2B—N1B 117.9 (3) C11D—N3D—H3N7 120 (3)
C11B—N2B—H2NB 118 (3) C11D—N3D—H3N8 116 (3)
N1B—N2B—H2NB 125 (3) H3N7—N3D—H3N8 124 (5)
N3B—C11B—N2B 117.4 (3) C1S—O1S—H1S 109.5
N3B—C11B—S2B 122.8 (3) O1S—C1S—H1S1 109.5
N2B—C11B—S2B 119.8 (3) O1S—C1S—H1S2 109.5
C11B—N3B—H3N3 116 (3) H1S1—C1S—H1S2 109.5
C11B—N3B—H3N4 115 (3) O1S—C1S—H1S3 109.5
H3N3—N3B—H3N4 129 (4) H1S1—C1S—H1S3 109.5
C2C—C1C—C6C 121.8 (3) H1S2—C1S—H1S3 109.5
C2C—C1C—S1C 126.7 (3) C2S—O2S—H2S 109.5
C6C—C1C—S1C 111.5 (3) O2S—C2S—H2S1 109.5
C3C—C2C—C1C 117.9 (4) O2S—C2S—H2S2 109.5
C3C—C2C—H2C 121.1 H2S1—C2S—H2S2 109.5
C1C—C2C—H2C 121.1 O2S—C2S—H2S3 109.5
C2C—C3C—C4C 121.0 (4) H2S1—C2S—H2S3 109.5
C2C—C3C—H3C 119.5 H2S2—C2S—H2S3 109.5

Symmetry codes: (i) x, −y+3/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3A—H3N2···N1A 0.843 (10) 2.29 (4) 2.641 (4) 105 (3)
N3B—H3N3···N1B 0.838 (10) 2.21 (4) 2.617 (4) 110 (3)
N3C—H3N5···N1C 0.842 (10) 2.22 (5) 2.543 (4) 102 (4)
N3D—H3N7···N1D 0.841 (10) 2.29 (5) 2.643 (4) 105 (4)
N3A—H3N1···S2Bii 0.839 (10) 2.500 (14) 3.325 (3) 168 (4)
N3B—H3N4···S2Aiii 0.839 (10) 2.62 (2) 3.367 (3) 149 (4)
N2B—H2NB···S2Aiv 0.839 (10) 2.585 (13) 3.412 (3) 169 (4)
N3C—H3N6···S2Av 0.840 (10) 2.76 (4) 3.352 (3) 129 (4)
N3C—H3N6···N3Bvi 0.840 (10) 2.72 (3) 3.468 (5) 149 (5)
N2C—H2NC···S2Cvii 0.842 (10) 2.60 (2) 3.392 (3) 158 (4)
N3D—H3N8···S2Av 0.840 (10) 2.738 (15) 3.563 (3) 168 (4)
N3D—H3N7···O1S 0.841 (10) 2.26 (3) 2.967 (6) 142 (4)
O1S—H1S···S2Cvii 0.84 2.64 3.471 (5) 169
O2S—H2S···S2Dviii 0.84 2.97 3.389 (6) 113
C3A—H3A···S2Av 0.95 2.97 3.762 (4) 142
C10A—H10A···S2Bix 0.98 2.91 3.613 (3) 129
C2B—H2B···O1Sx 0.95 2.36 3.282 (7) 163
C2S—H2S1···N2Dviii 0.98 2.74 3.266 (9) 115
C10B—H10F···Cgxi 0.98 2.91 3.594 (4) 129

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y, z; (iv) x−1, −y+3/2, z−1/2; (v) −x+1, y−1/2, −z+3/2; (vi) −x, y−1/2, −z+3/2; (vii) −x, −y+1, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x+1, −y+3/2, z+1/2; (x) x, −y+3/2, z+1/2; (xi) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2725).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  7. Işık, S., Köysal, Y., Özdemir, Z. & Bilgin, A. A. (2006). Acta Cryst. E62, o491–o493.
  8. Lima, G. M. de, Neto, J. L., Beraldo, H., Siebald, H. G. L. & Duncalf, D. J. (2002). J. Mol. Struct.604, 287–291.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680801297X/hb2725sup1.cif

e-64-o1022-sup1.cif (32.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680801297X/hb2725Isup2.hkl

e-64-o1022-Isup2.hkl (531.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES