Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 17;64(Pt 6):o1112. doi: 10.1107/S1600536808014372

N-(Fluoren-9-ylmethoxy­carbon­yl)-l-leucine

Kazuhiko Yamada a,*, Daisuke Hashizume b, Tadashi Shimizu a
PMCID: PMC2961627  PMID: 21202623

Abstract

The title compound [systematic name: fluoren-9-yl N-(1-carb­oxy-3-methyl­butyl)carbamate], C21H23NO4, exhibits torsion angles that vary from the typical values found in other Fmoc-protected amino acids, viz. the orientations of the fluorene and carboxyl groups [C—O—C—C = 93.8 (2) and N—C—C=O = −23.6 (2)°]. The crystal structure exhibits two inter­molecular hydrogen bonds (O—H⋯O and N—H⋯O) that link the mol­ecules into two-dimensional sheets parallel to the ab plane.

Related literature

For related literature on the structures of N-α-Fmoc-protected amino acids, see: Valle et al. (1984); Yamada et al. (2008).graphic file with name e-64-o1112-scheme1.jpg

Experimental

Crystal data

  • C21H23NO4

  • M r = 353.40

  • Orthorhombic, Inline graphic

  • a = 5.4953 (1) Å

  • b = 14.2700 (3) Å

  • c = 24.3759 (6) Å

  • V = 1911.51 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 150 K

  • 0.40 × 0.08 × 0.06 mm

Data collection

  • Rigaku AFC-8 diffractometer with Saturn70 CCD detector

  • Absorption correction: none

  • 40257 measured reflections

  • 3207 independent reflections

  • 2906 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.111

  • S = 1.09

  • 3207 reflections

  • 327 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014372/fl2198sup1.cif

e-64-o1112-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014372/fl2198Isup2.hkl

e-64-o1112-Isup2.hkl (157.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2H⋯O3i 0.85 (3) 1.82 (3) 2.6558 (17) 167 (3)
N1—H1N⋯O1ii 0.87 (3) 2.24 (3) 3.0751 (18) 161 (2)
C8—H8A⋯O1iii 0.90 (2) 2.51 (2) 3.392 (2) 166 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KY thanks the Ministry of Education, Science, Sports, Culture, and Technology (MEXT) of Japan for funding this work [Young Scientists (B), 20750022].

supplementary crystallographic information

Comment

The fluoren-9-ylmethoxycarbonyl (Fmoc) group is currently one of the most frequently used protecting groups for peptide synthesis since rapid cleavages can be readily achieved under mild basic conditions with racemization-free results. Almost all the Fmoc-protected twenty-L-amino acids are commercially available. The crystal structures of N-α-Fmoc-protected-L-alanine monohydrate (II, Valle et al., 1984) and L-serine (III, Yamada et al., 2008) have been reported so far. In the present study, we have carried out the crystal structure analysis of N-α-Fmoc-L-leucine, (I).

The bond distances and bond angles of (I, Fig. 1) are consistent with the typical values of Fmoc-protected amino acids found in the other crystal structures. Some torsion angles, however, are found to be quite different. The torsion angle of O2—C6—C1—N1, for example, is -23.6 (2)°, which is in disagreement with the previous observations in the Fmoc-protected amino acids in which the corresponding angles are 150.6° and 175.8° for (II) (Valle et al., 1984) and (III) (Yamada et al., 2008), respectively. Another example is that the torsion angle of C6—C1—N1—C7 in (I) is found to be -134.51 (15)°, which is in reasonable agreement with that of (II), -151.6°, but is inconsistent with that found in (II), -65.6°. Each angle between the fluorene ring and the NC(δb O)O plane is found to be different among the three Fmoc-protected amino acids. The torsion angles C7—O4—C8—C9 and O4—C8—C9—C10 for the title compound, for instance, are 93.78 (16)° and 60.54 (17)°, respectively. On the other hand, the corresponding angles are -179.7° and -172.1°, and 121.9° and -68.2° for (II) and (III), respectively.

Crystals of (I) contain two intermolecular hydrogen bonds (Table 1), which are formed between the carboxyl (O2—H2H) and amide oxygens (O3), and between the amide (N1—H1N) and the carbonyl (O1). The molecules are linked by O2—H2H···O3 hydrogen bonds to form a chain structure along the b axis. The linkage is supported by an additional C—H···O interaction (C8—H8A···O1). The chains are joined together by the N1—H1N···O1 hydrogen bonds to form a sheet structure parallel to the ab plane. The Fmoc and i-butyl moieties are packed between the sheets (Fig. 2).

Experimental

A powdered sample (I) was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan) and was used for crystallization without further purifications. Colourless needle like crystals of (I) were slowly grown from a saturated dichloromethane solution.

Refinement

All H atoms were found in difference maps an refined with isotropic thermal parameters.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A packing diagram of (I) viewed. The hydrogen atoms were omitted for clarity, except for those forming the hydrogen bonds. Broken lines indicate the hydrogen bonds.

Crystal data

C21H23NO4 F000 = 752
Mr = 353.40 Dx = 1.228 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 40402 reflections
a = 5.49530 (10) Å θ = 2.2–30.0º
b = 14.2700 (3) Å µ = 0.09 mm1
c = 24.3759 (6) Å T = 150 K
V = 1911.51 (7) Å3 Needle, colourless
Z = 4 0.40 × 0.08 × 0.06 mm

Data collection

Rigaku AFC-8 diffractometer with Saturn70 CCD detector 3207 independent reflections
Radiation source: fine-focus rotating anode 2906 reflections with I > 2σ(I)
Monochromator: confocal Rint = 0.055
Detector resolution: 28.5714 pixels mm-1 θmax = 30.0º
T = 150 K θmin = 2.2º
ω scans h = −7→7
Absorption correction: none k = −20→20
40257 measured reflections l = −34→34

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 All H-atom parameters refined
wR(F2) = 0.111   w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1717P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
3207 reflections Δρmax = 0.27 e Å3
327 parameters Δρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. All Friedel pairs were merged, and all f''s of containing atoms were set to zero.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3755 (2) 0.42665 (9) 0.27853 (7) 0.0421 (3)
O2 0.0123 (2) 0.47101 (9) 0.26982 (7) 0.0455 (4)
H2H −0.047 (5) 0.526 (2) 0.2667 (11) 0.055 (7)*
O3 0.1016 (2) 0.15166 (8) 0.23545 (6) 0.0360 (3)
O4 0.4680 (2) 0.22208 (8) 0.22403 (5) 0.0306 (2)
N1 0.1792 (2) 0.29706 (9) 0.26957 (6) 0.0284 (3)
H1N 0.280 (5) 0.3438 (18) 0.2738 (9) 0.044 (6)*
C1 −0.0651 (3) 0.31083 (10) 0.29096 (7) 0.0287 (3)
H1 −0.171 (4) 0.2659 (15) 0.2718 (9) 0.035 (5)*
C2 −0.0783 (4) 0.29621 (13) 0.35339 (8) 0.0406 (4)
H2A 0.047 (5) 0.3372 (19) 0.3712 (10) 0.048 (7)*
H2B −0.225 (6) 0.322 (2) 0.3692 (13) 0.065 (8)*
C3 −0.0497 (4) 0.19389 (13) 0.37135 (8) 0.0413 (4)
H3 0.102 (5) 0.1685 (18) 0.3516 (10) 0.048 (7)*
C4 −0.2695 (5) 0.13470 (17) 0.35502 (14) 0.0601 (7)
H4A −0.312 (6) 0.1369 (19) 0.3131 (11) 0.060 (8)*
H4B −0.387 (8) 0.163 (3) 0.3755 (15) 0.088 (11)*
H4C −0.262 (6) 0.065 (2) 0.3677 (13) 0.072 (9)*
C5 0.0014 (9) 0.18903 (19) 0.43291 (10) 0.0705 (9)
H5A 0.163 (8) 0.227 (3) 0.4437 (15) 0.093 (12)*
H5B 0.017 (6) 0.124 (2) 0.4463 (11) 0.060 (8)*
H5C −0.127 (7) 0.223 (2) 0.4509 (13) 0.072 (9)*
C6 −0.1606 (3) 0.40869 (10) 0.27831 (7) 0.0299 (3)
C7 0.2373 (3) 0.21843 (10) 0.24241 (6) 0.0261 (3)
C8 0.5484 (3) 0.14752 (11) 0.18786 (6) 0.0289 (3)
H8A 0.476 (5) 0.0932 (16) 0.1976 (9) 0.034 (5)*
H8B 0.721 (5) 0.1412 (15) 0.1960 (9) 0.034 (5)*
C9 0.5153 (3) 0.17588 (11) 0.12778 (7) 0.0291 (3)
H9 0.337 (5) 0.1858 (16) 0.1193 (9) 0.043 (6)*
C10 0.6613 (3) 0.26233 (11) 0.11325 (7) 0.0308 (3)
C11 0.6335 (4) 0.35445 (12) 0.13131 (8) 0.0385 (4)
H11 0.504 (5) 0.3707 (16) 0.1573 (9) 0.035 (5)*
C12 0.8001 (4) 0.42145 (13) 0.11327 (9) 0.0456 (4)
H12 0.783 (5) 0.4852 (19) 0.1253 (10) 0.054 (7)*
C13 0.9889 (4) 0.39782 (15) 0.07795 (8) 0.0459 (5)
H13 1.117 (5) 0.4495 (19) 0.0642 (11) 0.057 (7)*
C14 1.0166 (4) 0.30626 (15) 0.05954 (8) 0.0408 (4)
H14 1.148 (5) 0.2884 (16) 0.0338 (10) 0.048 (6)*
C15 0.8514 (3) 0.23871 (12) 0.07728 (7) 0.0323 (3)
C16 0.8333 (3) 0.13832 (12) 0.06424 (6) 0.0329 (3)
C17 0.9738 (4) 0.08170 (16) 0.03029 (8) 0.0437 (4)
H17 1.114 (5) 0.1107 (17) 0.0111 (10) 0.048 (7)*
C18 0.9091 (5) −0.01199 (16) 0.02442 (8) 0.0505 (5)
H18 1.003 (6) −0.0545 (19) 0.0001 (11) 0.060 (7)*
C19 0.7076 (5) −0.04829 (14) 0.05165 (8) 0.0473 (5)
H19 0.671 (5) −0.1136 (19) 0.0461 (10) 0.053 (7)*
C20 0.5670 (4) 0.00808 (12) 0.08599 (8) 0.0392 (4)
H20 0.423 (5) −0.0159 (18) 0.1060 (11) 0.053 (7)*
C21 0.6305 (3) 0.10141 (11) 0.09189 (6) 0.0317 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0236 (6) 0.0258 (5) 0.0769 (9) 0.0009 (4) 0.0034 (6) −0.0057 (6)
O2 0.0258 (6) 0.0197 (5) 0.0910 (11) −0.0004 (4) −0.0005 (7) 0.0087 (6)
O3 0.0236 (5) 0.0220 (5) 0.0623 (7) −0.0025 (4) 0.0012 (5) −0.0085 (5)
O4 0.0245 (5) 0.0259 (5) 0.0415 (6) −0.0027 (4) 0.0051 (5) −0.0058 (4)
N1 0.0232 (6) 0.0190 (5) 0.0430 (7) −0.0026 (5) 0.0012 (5) −0.0035 (5)
C1 0.0246 (7) 0.0194 (6) 0.0423 (8) −0.0004 (5) 0.0036 (6) −0.0008 (5)
C2 0.0521 (11) 0.0276 (7) 0.0422 (8) 0.0008 (8) 0.0104 (8) 0.0005 (6)
C3 0.0447 (10) 0.0325 (8) 0.0466 (9) 0.0005 (8) 0.0056 (8) 0.0076 (7)
C4 0.0468 (13) 0.0424 (11) 0.0911 (19) −0.0093 (10) 0.0005 (13) 0.0225 (12)
C5 0.115 (3) 0.0485 (12) 0.0480 (11) 0.0009 (17) 0.0066 (16) 0.0115 (10)
C6 0.0243 (7) 0.0214 (6) 0.0440 (8) −0.0003 (5) 0.0012 (6) −0.0026 (5)
C7 0.0229 (6) 0.0204 (6) 0.0351 (7) 0.0002 (5) −0.0014 (5) 0.0006 (5)
C8 0.0270 (7) 0.0235 (6) 0.0361 (7) 0.0019 (6) 0.0027 (6) −0.0013 (5)
C9 0.0249 (7) 0.0254 (7) 0.0370 (7) −0.0001 (6) −0.0018 (6) −0.0007 (5)
C10 0.0282 (8) 0.0287 (7) 0.0353 (7) −0.0019 (6) −0.0020 (6) 0.0030 (6)
C11 0.0407 (10) 0.0293 (8) 0.0455 (9) −0.0012 (7) 0.0029 (8) 0.0011 (6)
C12 0.0529 (12) 0.0301 (8) 0.0537 (10) −0.0085 (9) 0.0003 (10) 0.0034 (7)
C13 0.0463 (11) 0.0412 (10) 0.0500 (10) −0.0140 (9) −0.0004 (9) 0.0089 (8)
C14 0.0346 (9) 0.0490 (10) 0.0389 (8) −0.0064 (8) 0.0021 (7) 0.0082 (7)
C15 0.0305 (8) 0.0338 (7) 0.0326 (7) −0.0004 (6) −0.0026 (6) 0.0037 (6)
C16 0.0325 (8) 0.0364 (8) 0.0296 (6) 0.0047 (7) −0.0040 (6) 0.0006 (6)
C17 0.0427 (10) 0.0523 (11) 0.0360 (8) 0.0134 (9) −0.0003 (8) −0.0033 (7)
C18 0.0625 (14) 0.0489 (11) 0.0401 (9) 0.0206 (11) −0.0069 (9) −0.0108 (8)
C19 0.0671 (14) 0.0341 (9) 0.0406 (8) 0.0092 (9) −0.0122 (10) −0.0079 (7)
C20 0.0483 (11) 0.0299 (8) 0.0395 (8) −0.0001 (8) −0.0082 (8) −0.0026 (6)
C21 0.0330 (8) 0.0298 (7) 0.0324 (7) 0.0042 (6) −0.0060 (6) −0.0021 (6)

Geometric parameters (Å, °)

O1—C6 1.208 (2) C8—H8B 0.97 (2)
O2—C6 1.318 (2) C9—C10 1.514 (2)
O2—H2H 0.85 (3) C9—C21 1.515 (2)
O3—C7 1.2217 (18) C9—H9 1.01 (3)
O4—C7 1.3460 (19) C10—C11 1.395 (2)
O4—C8 1.4506 (18) C10—C15 1.405 (2)
N1—C7 1.3413 (18) C11—C12 1.395 (3)
N1—C1 1.453 (2) C11—H11 0.98 (2)
N1—H1N 0.87 (3) C12—C13 1.390 (3)
C1—C6 1.523 (2) C12—H12 0.96 (3)
C1—C2 1.538 (2) C13—C14 1.390 (3)
C1—H1 0.98 (2) C13—H13 1.07 (3)
C2—C3 1.532 (3) C14—C15 1.393 (3)
C2—H2A 1.00 (3) C14—H14 0.99 (3)
C2—H2B 0.96 (3) C15—C16 1.471 (2)
C3—C4 1.527 (3) C16—C17 1.391 (3)
C3—C5 1.528 (3) C16—C21 1.405 (3)
C3—H3 1.03 (3) C17—C18 1.391 (3)
C4—H4A 1.05 (3) C17—H17 0.99 (3)
C4—H4B 0.91 (4) C18—C19 1.391 (4)
C4—H4C 1.04 (3) C18—H18 0.99 (3)
C5—H5A 1.08 (4) C19—C20 1.395 (3)
C5—H5B 0.98 (3) C19—H19 0.96 (3)
C5—H5C 0.96 (4) C20—C21 1.384 (2)
C8—C9 1.530 (2) C20—H20 0.99 (3)
C8—H8A 0.90 (2)
C6—O2—H2H 111.1 (19) C9—C8—H8B 109.5 (13)
C7—O4—C8 117.44 (12) H8A—C8—H8B 107 (2)
C7—N1—C1 120.66 (13) C10—C9—C21 102.41 (13)
C7—N1—H1N 123.1 (16) C10—C9—C8 112.11 (13)
C1—N1—H1N 116.1 (16) C21—C9—C8 108.51 (13)
N1—C1—C6 111.69 (13) C10—C9—H9 110.6 (13)
N1—C1—C2 112.36 (15) C21—C9—H9 112.6 (13)
C6—C1—C2 107.96 (13) C8—C9—H9 110.4 (13)
N1—C1—H1 106.7 (13) C11—C10—C15 120.30 (16)
C6—C1—H1 107.3 (13) C11—C10—C9 129.51 (16)
C2—C1—H1 110.7 (13) C15—C10—C9 110.16 (14)
C3—C2—C1 114.03 (14) C10—C11—C12 118.34 (19)
C3—C2—H2A 111.3 (15) C10—C11—H11 120.5 (13)
C1—C2—H2A 108.5 (14) C12—C11—H11 121.1 (13)
C3—C2—H2B 109.2 (18) C13—C12—C11 121.27 (19)
C1—C2—H2B 112.6 (18) C13—C12—H12 119.4 (17)
H2A—C2—H2B 100 (2) C11—C12—H12 119.3 (17)
C4—C3—C5 112.1 (2) C14—C13—C12 120.65 (18)
C4—C3—C2 111.80 (19) C14—C13—H13 118.2 (15)
C5—C3—C2 110.04 (18) C12—C13—H13 121.1 (14)
C4—C3—H3 108.9 (14) C13—C14—C15 118.62 (19)
C5—C3—H3 107.1 (14) C13—C14—H14 121.8 (14)
C2—C3—H3 106.6 (15) C15—C14—H14 119.6 (14)
C3—C4—H4A 114.4 (17) C14—C15—C10 120.82 (17)
C3—C4—H4B 100 (2) C14—C15—C16 130.61 (18)
H4A—C4—H4B 111 (3) C10—C15—C16 108.56 (15)
C3—C4—H4C 115 (2) C17—C16—C21 120.53 (18)
H4A—C4—H4C 109 (2) C17—C16—C15 131.08 (19)
H4B—C4—H4C 107 (3) C21—C16—C15 108.36 (15)
C3—C5—H5A 112 (2) C16—C17—C18 118.6 (2)
C3—C5—H5B 112.7 (16) C16—C17—H17 118.0 (14)
H5A—C5—H5B 109 (3) C18—C17—H17 123.4 (14)
C3—C5—H5C 107 (2) C17—C18—C19 120.8 (2)
H5A—C5—H5C 104 (3) C17—C18—H18 121.1 (16)
H5B—C5—H5C 112 (3) C19—C18—H18 118.0 (16)
O1—C6—O2 124.21 (15) C18—C19—C20 120.84 (19)
O1—C6—C1 122.02 (15) C18—C19—H19 117.2 (17)
O2—C6—C1 113.70 (14) C20—C19—H19 121.9 (17)
O3—C7—N1 125.15 (15) C21—C20—C19 118.5 (2)
O3—C7—O4 123.98 (14) C21—C20—H20 118.9 (15)
N1—C7—O4 110.87 (13) C19—C20—H20 122.6 (15)
O4—C8—C9 110.58 (13) C20—C21—C16 120.73 (16)
O4—C8—H8A 109.7 (14) C20—C21—C9 129.00 (17)
C9—C8—H8A 115.2 (14) C16—C21—C9 110.22 (14)
O4—C8—H8B 104.0 (13)
C7—N1—C1—C6 −134.51 (15) C13—C14—C15—C10 −0.3 (3)
C7—N1—C1—C2 103.99 (16) C13—C14—C15—C16 178.99 (18)
N1—C1—C2—C3 −70.9 (2) C11—C10—C15—C14 0.7 (3)
C6—C1—C2—C3 165.48 (17) C9—C10—C15—C14 −177.72 (16)
C1—C2—C3—C4 −69.5 (3) C11—C10—C15—C16 −178.72 (16)
C1—C2—C3—C5 165.2 (2) C9—C10—C15—C16 2.82 (18)
N1—C1—C6—O1 159.29 (17) C14—C15—C16—C17 −0.5 (3)
C2—C1—C6—O1 −76.7 (2) C10—C15—C16—C17 178.86 (18)
N1—C1—C6—O2 −23.6 (2) C14—C15—C16—C21 −178.76 (18)
C2—C1—C6—O2 100.39 (19) C10—C15—C16—C21 0.63 (18)
C1—N1—C7—O3 −3.6 (2) C21—C16—C17—C18 −0.1 (3)
C1—N1—C7—O4 177.08 (13) C15—C16—C17—C18 −178.11 (18)
C8—O4—C7—O3 8.3 (2) C16—C17—C18—C19 0.3 (3)
C8—O4—C7—N1 −172.31 (13) C17—C18—C19—C20 −0.7 (3)
C7—O4—C8—C9 93.78 (16) C18—C19—C20—C21 0.8 (3)
O4—C8—C9—C10 60.54 (17) C19—C20—C21—C16 −0.5 (3)
O4—C8—C9—C21 172.91 (13) C19—C20—C21—C9 −177.57 (17)
C21—C9—C10—C11 176.89 (18) C17—C16—C21—C20 0.2 (2)
C8—C9—C10—C11 −67.0 (2) C15—C16—C21—C20 178.61 (16)
C21—C9—C10—C15 −4.84 (17) C17—C16—C21—C9 177.72 (15)
C8—C9—C10—C15 111.28 (16) C15—C16—C21—C9 −3.83 (18)
C15—C10—C11—C12 −0.7 (3) C10—C9—C21—C20 −177.46 (17)
C9—C10—C11—C12 177.40 (17) C8—C9—C21—C20 63.8 (2)
C10—C11—C12—C13 0.3 (3) C10—C9—C21—C16 5.24 (17)
C11—C12—C13—C14 0.1 (3) C8—C9—C21—C16 −113.45 (15)
C12—C13—C14—C15 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2H···O3i 0.85 (3) 1.82 (3) 2.6558 (17) 167 (3)
N1—H1N···O1ii 0.87 (3) 2.24 (3) 3.0751 (18) 161 (2)
C8—H8A···O1iii 0.90 (2) 2.51 (2) 3.392 (2) 166 (2)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) −x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2198).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  4. Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Valle, G., Bonora, G. M. & Toniolo, C. (1984). Can. J. Chem.62, 2661–2666.
  7. Yamada, K., Hashizume, D., Shimizu, T., Ohiki, S. & Yokoyama, S. (2008). J. Mol. Struct. In the press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808014372/fl2198sup1.cif

e-64-o1112-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808014372/fl2198Isup2.hkl

e-64-o1112-Isup2.hkl (157.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES