Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 May 30;64(Pt 6):o1167. doi: 10.1107/S1600536808015572

2-(2-Methyl­naphtho[2,1-b]furan-1-yl)acetic acid

Martyn Jevric a, Dennis K Taylor b,, Edward R T Tiekink c,*
PMCID: PMC2961634  PMID: 21202674

Abstract

In the title mol­ecule, C15H12O3, the two six-membered and one five-membered fused-ring system is almost planar and the CH2C(=O)OH residue is essentially orthogonal to it. In the crystal structure, centrosymmetric dimers are formed via the carboxylic acid {⋯O=C—O—H}2 synthon.

Related literature

For related literature, see: Haselgrove et al. (1999); Jevric et al. (2001).graphic file with name e-64-o1167-scheme1.jpg

Experimental

Crystal data

  • C15H12O3

  • M r = 240.25

  • Monoclinic, Inline graphic

  • a = 31.380 (3) Å

  • b = 4.8370 (4) Å

  • c = 15.7885 (13) Å

  • β = 98.087 (2)°

  • V = 2372.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 223 (2) K

  • 0.49 × 0.36 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 9334 measured reflections

  • 3445 independent reflections

  • 2790 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.138

  • S = 1.04

  • 3445 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015572/lh2631sup1.cif

e-64-o1167-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015572/lh2631Isup2.hkl

e-64-o1167-Isup2.hkl (169.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12⋯O11i 0.83 1.83 2.6553 (14) 170
C21—H21B⋯O12ii 0.97 2.52 3.2663 (19) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful to the Australian Research Council for financial support.

supplementary crystallographic information

Comment

The effective dehydrogenation of diastereomeric mixture of 1, Fig. 3, to form the aromatized tricyclic 2 could be effected with the use of DDQ in THF under reflux conditions (Haselgrove et al., 1999). Crystals of the title acid derivative (I) were obtained by base hydrolysis of 2 in methanol solution (Jevric et al., 2001).

The tricyclic system in (I), Fig. 1, comprises six- (A), six- (B), and five-membered rings (C) with the sequence of dihedral angles between their respective least-squares planes being 1.48 (6), 2.34 (6), 0.91 (6) ° for A/B, A/C, and B/C, respectively. The CH2C(=O)OH residue is essentially orthogonal to this aromatic system as seen in the C1/C11/C12/O11 torsion angle of -165.68 (9)°. Centrosymmetrically related molecules associate into dimers via the familiar eight-membered carboxylic acid {···O=C—O—H}2 synthon, Table 1. Each dimer thus formed is associated to two other molecules, each related by 2-fold symmetry, via C—H···O contacts. These consolidate molecules into a 2-D array in the bc-plane as shown in Fig. 2.

Experimental

To a stirring solution of 1 (Fig. 3, 1.91 g, 7.46 mmol) in anhydrous THF (50 ml) was added DDQ (1.81 g, 7.97 mmol) and the reaction brought to reflux for 24 h under a nitrogen atmosphere. The solution was allowed to cool to room temperature, diluted with water and extracted twice with dichloromethane. The organic phase was dried (MgSO4), filtered and volatiles removed in vacuo. The crude residue was purified by column chromatography (10% acetone in hexane) to give pure methyl 2-(2-methylnaphtho[2,1-b]furan-1-yl)acetate, 2, as a yellow solid, m.p: 349 - 351 K. Rf 0.41 (10% acetone in hexane). IR (CH2Cl2, cm-1) 1738, 1620, 1581, 1525, 804. 1H NMR (CDCl3, 300 MHz) δ 2.25 (s, 3H), 3.70 (s, 3H), 3.98 (s, 2H), 7.45–7.48 (m, 1H), 7.56–7.60 (m, 2H), 7.65–7.68 (m, 1H), 7.92–7.94 (m, 1H), 8.23–8.26 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 12.0, 31.5, 52.2, 109.5, 112.1, 122.2, 122.8, 124.0, 124.6, 126.1, 128.0, 129.0, 130.8, 151.5, 152.2, 171.6 p.p.m.. MS m/z (%): 254 (M+, 76), 95 (100), 181 (31), 165 (27), 152 (22). HRMS, C16H14O3: calcd, 254.0943. Found 254.0942.

Compound (I) was obtained by the base hydrolysis of 2 in methanol solution. The colourless solid was recrystallized from ethanol solution in 75% yield; m.p.: 451 - 455 K (decomposes, sealed tube). IR (nujol, cm-1) 1699, 1622, 1579, 1525. 1H NMR (CDCl3, 300 MHz) δ 2.51 (s, 3H), 4.00 (s, 2H), 7.44–7.69 (m, 4H), 7.91–7.94 (m, 1H), 8.21–8.23 (m, 1H) p.p.m.. 13C NMR (CDCl3, 50 MHz) δ 11.9, 31.1, 108.8, 112.1, 122.0, 122.7, 124.0, 126.2, 127.9, 129.1, 130.8, 151.6, 152.4, 175.5 (1 masked carbon) p.p.m.. MS m/z (%): 240 (M+, 39), 195 (100), 165 (13), 152 (13), 69 (37). Elemental analysis found: C, 74.92; H, 4.98%. C15H12O3 requires C, 74.99; H, 5.03%.

Refinement

All H atoms were included in the riding-model approximation, with C—H = 0.94 to 0.98 Å and O—H = 0.83 Å, and with Uiso(H) = 1.5Ueq(methyl-C and O) or 1.2Ueq(remaining C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. In addition an unlabelled symmetry related (1-x, 1-y, 1-z) molecule is shown to demonstrate the formation of a hydrogen bonded dimer.

Fig. 2.

Fig. 2.

Crystal packing in (I) viewed in projection down the b axis highlighting the stacking of the 2-D arrays. Colour scheme red (O), grey (C), and green (H). The O—H···O (orange) and C—H···O (blue) contacts are shown as dashed lines.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C15H12O3 F000 = 1008
Mr = 240.25 Dx = 1.345 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71069 Å
Hall symbol: -C 2yc Cell parameters from 3301 reflections
a = 31.380 (3) Å θ = 2.6–29.4º
b = 4.8370 (4) Å µ = 0.09 mm1
c = 15.7885 (13) Å T = 223 (2) K
β = 98.087 (2)º Block, colourless
V = 2372.6 (3) Å3 0.49 × 0.36 × 0.18 mm
Z = 8

Data collection

Bruker SMART CCD diffractometer 2790 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
Monochromator: graphite θmax = 30.0º
T = 223(2) K θmin = 2.6º
ω scans h = −43→43
Absorption correction: none k = −6→4
9334 measured reflections l = −22→22
3445 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.138   w = 1/[σ2(Fo2) + (0.0801P)2 + 0.5375P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3445 reflections Δρmax = 0.34 e Å3
164 parameters Δρmin = −0.15 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.39156 (3) 0.5681 (2) 0.14890 (5) 0.0436 (2)
O11 0.47261 (3) 0.47260 (18) 0.40193 (6) 0.0458 (2)
O12 0.46215 (3) 0.7752 (2) 0.50211 (6) 0.0597 (3)
H12 0.4808 0.6801 0.5312 0.090*
C1 0.40206 (3) 0.6881 (2) 0.28846 (7) 0.0322 (2)
C2 0.41414 (4) 0.7340 (3) 0.21078 (7) 0.0389 (3)
C3a 0.36422 (4) 0.4133 (2) 0.19008 (7) 0.0371 (3)
C4 0.33570 (4) 0.2173 (3) 0.14967 (8) 0.0445 (3)
H4 0.3340 0.1805 0.0908 0.053*
C5 0.31044 (4) 0.0821 (3) 0.19964 (8) 0.0447 (3)
H5 0.2911 −0.0532 0.1748 0.054*
C5a 0.31254 (3) 0.1401 (2) 0.28866 (8) 0.0374 (3)
C6 0.28513 (4) 0.0037 (3) 0.33887 (10) 0.0480 (3)
H6 0.2655 −0.1288 0.3131 0.058*
C7 0.28646 (4) 0.0600 (3) 0.42402 (10) 0.0511 (3)
H7 0.2675 −0.0308 0.4559 0.061*
C8 0.31603 (4) 0.2532 (3) 0.46375 (8) 0.0451 (3)
H8 0.3170 0.2900 0.5225 0.054*
C9 0.34350 (4) 0.3890 (2) 0.41782 (7) 0.0360 (2)
H9 0.3634 0.5163 0.4456 0.043*
C9a 0.34237 (3) 0.3400 (2) 0.32913 (7) 0.0312 (2)
C9b 0.36901 (3) 0.4774 (2) 0.27625 (7) 0.0309 (2)
C11 0.42022 (3) 0.8343 (2) 0.36877 (7) 0.0336 (2)
H11A 0.3967 0.8781 0.4012 0.040*
H11B 0.4329 1.0095 0.3535 0.040*
C12 0.45400 (3) 0.6725 (2) 0.42568 (6) 0.0306 (2)
C21 0.44569 (4) 0.9241 (4) 0.17989 (10) 0.0560 (4)
H21A 0.4541 1.0645 0.2229 0.084*
H21B 0.4327 1.0118 0.1273 0.084*
H21C 0.4709 0.8204 0.1693 0.084*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0459 (5) 0.0549 (5) 0.0297 (4) 0.0104 (4) 0.0047 (3) 0.0020 (3)
O11 0.0497 (5) 0.0434 (5) 0.0394 (5) 0.0167 (4) −0.0108 (4) −0.0094 (3)
O12 0.0662 (6) 0.0695 (7) 0.0373 (5) 0.0348 (5) −0.0140 (4) −0.0176 (4)
C1 0.0310 (5) 0.0332 (5) 0.0311 (5) 0.0067 (4) 0.0001 (4) 0.0038 (4)
C2 0.0352 (5) 0.0463 (6) 0.0347 (5) 0.0086 (4) 0.0029 (4) 0.0069 (5)
C3a 0.0392 (5) 0.0411 (6) 0.0293 (5) 0.0108 (4) −0.0013 (4) −0.0013 (4)
C4 0.0490 (6) 0.0471 (7) 0.0334 (6) 0.0121 (5) −0.0089 (5) −0.0100 (5)
C5 0.0424 (6) 0.0386 (6) 0.0476 (7) 0.0056 (5) −0.0129 (5) −0.0106 (5)
C5a 0.0329 (5) 0.0316 (5) 0.0447 (6) 0.0052 (4) −0.0055 (4) −0.0004 (4)
C6 0.0395 (6) 0.0379 (6) 0.0636 (8) −0.0032 (5) −0.0037 (5) 0.0045 (6)
C7 0.0460 (7) 0.0459 (7) 0.0624 (9) −0.0033 (5) 0.0110 (6) 0.0150 (6)
C8 0.0519 (7) 0.0433 (6) 0.0407 (6) 0.0039 (5) 0.0087 (5) 0.0085 (5)
C9 0.0405 (5) 0.0331 (5) 0.0335 (5) 0.0031 (4) 0.0019 (4) 0.0016 (4)
C9a 0.0312 (5) 0.0281 (5) 0.0325 (5) 0.0070 (4) −0.0016 (4) 0.0004 (4)
C9b 0.0318 (5) 0.0306 (5) 0.0284 (5) 0.0075 (4) −0.0017 (4) −0.0010 (4)
C11 0.0338 (5) 0.0294 (5) 0.0357 (5) 0.0029 (4) −0.0013 (4) 0.0016 (4)
C12 0.0289 (4) 0.0312 (5) 0.0305 (5) −0.0006 (4) 0.0005 (3) −0.0001 (4)
C21 0.0455 (7) 0.0702 (10) 0.0545 (8) 0.0040 (6) 0.0150 (6) 0.0185 (7)

Geometric parameters (Å, °)

O3—C3a 1.3697 (15) C5a—C9a 1.4323 (15)
O3—C2 1.3807 (15) C6—C7 1.366 (2)
O11—C12 1.2157 (13) C6—H6 0.9400
O12—C12 1.2968 (13) C7—C8 1.401 (2)
O12—H12 0.8300 C7—H7 0.9400
C1—C2 1.3519 (16) C8—C9 1.3697 (17)
C1—C9b 1.4474 (15) C8—H8 0.9400
C1—C11 1.4930 (15) C9—C9a 1.4157 (15)
C2—C21 1.4832 (18) C9—H9 0.9400
C3a—C9b 1.3829 (15) C9a—C9b 1.4261 (15)
C3a—C4 1.3950 (17) C11—C12 1.5084 (14)
C4—C5 1.362 (2) C11—H11A 0.9800
C4—H4 0.9400 C11—H11B 0.9800
C5—C5a 1.4255 (18) C21—H21A 0.9700
C5—H5 0.9400 C21—H21B 0.9700
C5a—C6 1.4127 (18) C21—H21C 0.9700
C3a—O3—C2 105.97 (9) C9—C8—H8 119.7
C12—O12—H12 109.5 C7—C8—H8 119.7
C2—C1—C9b 106.37 (10) C8—C9—C9a 120.89 (11)
C2—C1—C11 124.78 (11) C8—C9—H9 119.6
C9b—C1—C11 128.84 (10) C9a—C9—H9 119.6
C1—C2—O3 111.41 (11) C9—C9a—C9b 124.47 (10)
C1—C2—C21 133.27 (12) C9—C9a—C5a 118.55 (11)
O3—C2—C21 115.32 (11) C9b—C9a—C5a 116.98 (10)
O3—C3a—C9b 110.84 (10) C3a—C9b—C9a 118.67 (10)
O3—C3a—C4 123.97 (10) C3a—C9b—C1 105.40 (10)
C9b—C3a—C4 125.19 (11) C9a—C9b—C1 135.91 (9)
C5—C4—C3a 116.72 (11) C1—C11—C12 114.36 (9)
C5—C4—H4 121.6 C1—C11—H11A 108.7
C3a—C4—H4 121.6 C12—C11—H11A 108.7
C4—C5—C5a 121.79 (11) C1—C11—H11B 108.7
C4—C5—H5 119.1 C12—C11—H11B 108.7
C5a—C5—H5 119.1 H11A—C11—H11B 107.6
C6—C5a—C5 120.93 (11) O11—C12—O12 123.46 (9)
C6—C5a—C9a 118.45 (11) O11—C12—C11 123.82 (9)
C5—C5a—C9a 120.62 (11) O12—C12—C11 112.68 (9)
C7—C6—C5a 121.48 (12) C2—C21—H21A 109.5
C7—C6—H6 119.3 C2—C21—H21B 109.5
C5a—C6—H6 119.3 H21A—C21—H21B 109.5
C6—C7—C8 120.00 (12) C2—C21—H21C 109.5
C6—C7—H7 120.0 H21A—C21—H21C 109.5
C8—C7—H7 120.0 H21B—C21—H21C 109.5
C9—C8—C7 120.60 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O12—H12···O11i 0.83 1.83 2.6553 (14) 170
C21—H21B···O12ii 0.97 2.52 3.2663 (19) 134

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2631).

References

  1. Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435–435.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Haselgrove, T. D., Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (1999). Tetrahedron, 55, 14739–14762.
  5. Jevric, M., Taylor, D. K. & Tiekink, E. R. T. (2001). Z. Kristallogr.216, 543–544.
  6. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015572/lh2631sup1.cif

e-64-o1167-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015572/lh2631Isup2.hkl

e-64-o1167-Isup2.hkl (169.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES