Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1242. doi: 10.1107/S1600536808016814

Methyl 5-(2-bromo­acet­yl)-2-propoxybenzoate

Jiang Ke a, Xu Guan-Hong a, Li Fei a,*
PMCID: PMC2961638  PMID: 21202877

Abstract

The title compound, C13H15BrO4, was synthesized from methyl 5-acetyl-2-hydroxy­benzoate. With the exception of the ester group and some H atoms, the molecule is planar, the average deviation from planarity being 0.086 (5) Å. The dihedral angle between the phenyl ring and the ester group is 41.6 (3)°. Adjacent mol­ecules are inter­connected by C—H⋯O bonds, generating a layered structure.

Related literature

For related literature, see: Grisar et al. (1981); Gronnow et al. (2005); Watanabe et al. (1984).graphic file with name e-64-o1242-scheme1.jpg

Experimental

Crystal data

  • C13H15BrO4

  • M r = 315.16

  • Monoclinic, Inline graphic

  • a = 16.292 (3) Å

  • b = 10.534 (2) Å

  • c = 7.8160 (16) Å

  • β = 92.42 (3)°

  • V = 1340.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.07 mm−1

  • T = 293 (2) K

  • 0.30 × 0.10 × 0.09 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan(North et al., 1986) T min = 0.459, T max = 0.770

  • 5055 measured reflections

  • 2418 independent reflections

  • 1255 reflections with I > 2σ(I)

  • R int = 0.038

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067

  • wR(F 2) = 0.163

  • S = 1.01

  • 2418 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016814/kp2172sup1.cif

e-64-o1242-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016814/kp2172Isup2.hkl

e-64-o1242-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.97 2.35 3.148 (9) 139
C8—H8A⋯O1i 0.93 2.59 3.500 (7) 165
C9—H9A⋯O2ii 0.96 2.61 3.534 (8) 162
C9—H9C⋯O3iii 0.96 2.59 3.501 (8) 158
C13—H13A⋯O2iv 0.97 2.59 3.484 (7) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge staff of the Shanghai Institute of Materia Medica for their active cooperation in this work. We also thank the Instrument Analysis and Research Center of Nanjing University for the structural characterization.

supplementary crystallographic information

Comment

Methyl 5-acetyl-2-hydroxybenzoate is a common chemical intermediate, which can be easily obtained (Gronnow et al., 2005). It is widely used for the design and synthesis of biological compounds. Biological activities, such as antiulcer (Watanabe et al., 1984) and antihypertensive (Grisar et al., 1981) effects of methyl 5-acetyl-2-hydroxybenzoate derivatives have been reported. In our research, the title compound, (I) (Fig. 1) is an important intermediate used to synthesize variety of compounds, which might have an inhibitive effect on PDE5. Considerable attention has been devoted to the biological activities of methyl 5-acetyl-2-hydroxybenzoate derivatives, however, the crystal structure of the title compound has not been reported, yet. In this work, we present the crystal structure of the title compound.

The molecule is planar with the average deviation from the planarity of 0.086 (5) Å. However, the ester group is out of this plane. The dihedral angle between the phenyl and the ester group is 41.65°.

Packing analysis of the crystal structure shows that molecules are intercontacted by weak C—H···O interactions generating a layered structure (Table 1, Fig. 2).

Experimental

Methyl 5-acetyl-2-propoxybenzoate was obtained by the alkylation of methyl 5-acetyl-2-hydroxybenzoate. To a mixture of methyl 5-acetyl-2-propoxybenzoate (1 mmol), aluminium trichloride (0.15 mmol) and dichlormethane (15 mL), bromine (1.1 mmol) was added dropwise during 15 min at 273 K. The mixture was stirred at room temperature for 10 h. The resulting mixture was washed by aqueous solution of sodium thiosulfate, saturated salt solution, dried by anhydrous sodium sulfate, then the solvent was distilled off. Single crystals suitable for X-ray analysis (m.p. 379 K) were obtained by slow evaporation of solvent mixture of dichlormethane and methanol at room temperature.

Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, 0.97Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and the 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Layered structure generated by weak C—H···O hydrogen bonds .

Crystal data

C13H15BrO4 F000 = 640
Mr = 315.16 Dx = 1.562 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
a = 16.292 (3) Å Cell parameters from 25 reflections
b = 10.534 (2) Å θ = 10–13º
c = 7.8160 (16) Å µ = 3.07 mm1
β = 92.42 (3)º T = 293 (2) K
V = 1340.2 (5) Å3 Block, colourless
Z = 4 0.30 × 0.10 × 0.09 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.038
Radiation source: fine-focus sealed tube θmax = 25.2º
Monochromator: graphite θmin = 1.3º
T = 293(2) K h = −19→19
ω/2θ scans k = 0→12
Absorption correction: ψ scan(North et al., 1968) l = 0→9
Tmin = 0.459, Tmax = 0.770 3 standard reflections
5055 measured reflections every 200 reflections
2418 independent reflections intensity decay: none
1255 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067 H-atom parameters constrained
wR(F2) = 0.163   w = 1/[σ2(Fo2) + (0.070P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2418 reflections Δρmax = 0.59 e Å3
163 parameters Δρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.87726 (4) −0.11114 (8) 0.09429 (10) 0.0697 (3)
O1 1.0062 (3) 0.0376 (4) 0.2942 (6) 0.0686 (13)
C1 0.9832 (4) −0.1652 (7) 0.1690 (10) 0.067 (2)
H1A 0.9781 −0.2417 0.2368 0.080*
H1B 1.0141 −0.1867 0.0696 0.080*
O2 1.3189 (3) 0.0316 (4) 0.7514 (4) 0.0528 (11)
C2 1.0319 (3) −0.0665 (5) 0.2757 (7) 0.0404 (13)
O3 1.2859 (3) 0.1509 (4) 0.5226 (5) 0.0500 (11)
C3 1.1118 (3) −0.1133 (5) 0.3539 (6) 0.0358 (12)
O4 1.3340 (2) −0.2111 (3) 0.5971 (4) 0.0428 (9)
C4 1.1620 (3) −0.0215 (5) 0.4371 (6) 0.0362 (12)
H4A 1.1452 0.0630 0.4379 0.043*
C5 1.2358 (3) −0.0556 (5) 0.5178 (6) 0.0346 (12)
C6 1.2604 (3) −0.1825 (5) 0.5180 (6) 0.0348 (12)
C7 1.2117 (3) −0.2720 (5) 0.4331 (6) 0.0420 (13)
H7A 1.2287 −0.3562 0.4305 0.050*
C8 1.1383 (3) −0.2374 (6) 0.3525 (6) 0.0397 (13)
H8A 1.1062 −0.2988 0.2963 0.048*
C9 1.3255 (5) 0.2576 (7) 0.6034 (8) 0.069 (2)
H9A 1.3221 0.3293 0.5277 0.104*
H9B 1.3821 0.2376 0.6295 0.104*
H9C 1.2988 0.2774 0.7073 0.104*
C10 1.2855 (3) 0.0437 (6) 0.6120 (7) 0.0399 (13)
C11 1.4632 (4) −0.4854 (7) 0.7446 (10) 0.074 (2)
H11A 1.5150 −0.4884 0.8077 0.111*
H11B 1.4674 −0.5307 0.6387 0.111*
H11C 1.4216 −0.5240 0.8109 0.111*
C12 1.4400 (4) −0.3468 (6) 0.7070 (8) 0.0524 (16)
H12A 1.4372 −0.3001 0.8135 0.063*
H12B 1.4815 −0.3076 0.6390 0.063*
C13 1.3581 (3) −0.3422 (6) 0.6111 (7) 0.0423 (14)
H13A 1.3623 −0.3791 0.4981 0.051*
H13B 1.3176 −0.3899 0.6722 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0589 (4) 0.0640 (5) 0.0837 (6) 0.0063 (4) −0.0256 (3) −0.0101 (4)
O1 0.069 (3) 0.038 (3) 0.095 (3) 0.010 (3) −0.035 (3) −0.013 (3)
C1 0.063 (4) 0.043 (4) 0.092 (5) 0.017 (3) −0.027 (4) −0.038 (4)
O2 0.075 (3) 0.044 (2) 0.038 (2) −0.007 (2) −0.019 (2) 0.000 (2)
C2 0.048 (3) 0.023 (3) 0.050 (3) 0.003 (3) −0.007 (3) −0.001 (3)
O3 0.077 (3) 0.031 (2) 0.040 (2) −0.016 (2) −0.0199 (19) 0.0067 (19)
C3 0.049 (3) 0.036 (3) 0.022 (3) −0.004 (3) −0.002 (2) −0.005 (2)
O4 0.050 (2) 0.032 (2) 0.045 (2) 0.0014 (18) −0.0100 (17) −0.0032 (18)
C4 0.054 (3) 0.027 (3) 0.028 (3) −0.001 (3) 0.000 (2) −0.007 (2)
C5 0.047 (3) 0.034 (3) 0.024 (3) −0.006 (3) 0.005 (2) −0.008 (2)
C6 0.035 (2) 0.035 (3) 0.033 (3) −0.003 (2) −0.004 (2) −0.003 (2)
C7 0.059 (3) 0.024 (3) 0.042 (3) 0.002 (3) −0.005 (3) 0.001 (3)
C8 0.049 (3) 0.036 (3) 0.034 (3) −0.006 (3) −0.002 (2) −0.005 (3)
C9 0.099 (5) 0.047 (4) 0.059 (4) −0.020 (4) −0.025 (4) 0.004 (3)
C10 0.051 (3) 0.034 (3) 0.034 (3) 0.002 (3) 0.001 (3) −0.001 (3)
C11 0.066 (4) 0.064 (5) 0.090 (5) 0.006 (4) −0.018 (4) 0.014 (4)
C12 0.054 (3) 0.050 (4) 0.051 (3) 0.011 (3) −0.014 (3) −0.002 (3)
C13 0.050 (3) 0.034 (3) 0.042 (3) 0.001 (3) −0.005 (3) −0.005 (3)

Geometric parameters (Å, °)

Br—C1 1.887 (6) C6—C7 1.382 (7)
O1—C2 1.185 (7) C7—C8 1.377 (7)
C1—C2 1.532 (8) C7—H7A 0.9300
C1—H1A 0.9700 C8—H8A 0.9300
C1—H1B 0.9700 C9—H9A 0.9600
O2—C10 1.204 (6) C9—H9B 0.9600
C2—C3 1.498 (7) C9—H9C 0.9600
O3—C10 1.328 (7) C11—C12 1.534 (10)
O3—C9 1.430 (7) C11—H11A 0.9600
C3—C8 1.377 (8) C11—H11B 0.9600
C3—C4 1.408 (7) C11—H11C 0.9600
O4—C6 1.360 (6) C12—C13 1.504 (7)
O4—C13 1.439 (7) C12—H12A 0.9700
C4—C5 1.382 (7) C12—H12B 0.9700
C4—H4A 0.9300 C13—H13A 0.9700
C5—C6 1.396 (8) C13—H13B 0.9700
C5—C10 1.498 (8)
C2—C1—Br 114.2 (4) C7—C8—H8A 119.5
C2—C1—H1A 108.7 O3—C9—H9A 109.5
Br—C1—H1A 108.7 O3—C9—H9B 109.5
C2—C1—H1B 108.7 H9A—C9—H9B 109.5
Br—C1—H1B 108.7 O3—C9—H9C 109.5
H1A—C1—H1B 107.6 H9A—C9—H9C 109.5
O1—C2—C3 124.0 (5) H9B—C9—H9C 109.5
O1—C2—C1 121.1 (5) O2—C10—O3 123.7 (5)
C3—C2—C1 114.8 (5) O2—C10—C5 125.8 (5)
C10—O3—C9 116.6 (4) O3—C10—C5 110.5 (4)
C8—C3—C4 118.7 (5) C12—C11—H11A 109.5
C8—C3—C2 125.2 (5) C12—C11—H11B 109.5
C4—C3—C2 116.1 (5) H11A—C11—H11B 109.5
C6—O4—C13 118.6 (4) C12—C11—H11C 109.5
C5—C4—C3 120.6 (5) H11A—C11—H11C 109.5
C5—C4—H4A 119.7 H11B—C11—H11C 109.5
C3—C4—H4A 119.7 C13—C12—C11 109.4 (6)
C4—C5—C6 119.6 (5) C13—C12—H12A 109.8
C4—C5—C10 119.0 (5) C11—C12—H12A 109.8
C6—C5—C10 121.3 (5) C13—C12—H12B 109.8
O4—C6—C7 123.0 (5) C11—C12—H12B 109.8
O4—C6—C5 117.4 (4) H12A—C12—H12B 108.2
C7—C6—C5 119.6 (4) O4—C13—C12 107.6 (5)
C8—C7—C6 120.6 (5) O4—C13—H13A 110.2
C8—C7—H7A 119.7 C12—C13—H13A 110.2
C6—C7—H7A 119.7 O4—C13—H13B 110.2
C3—C8—C7 120.9 (5) C12—C13—H13B 110.2
C3—C8—H8A 119.5 H13A—C13—H13B 108.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.97 2.35 3.148 (9) 139
C8—H8A···O1i 0.93 2.59 3.500 (7) 165
C9—H9A···O2ii 0.96 2.61 3.534 (8) 162
C9—H9C···O3iii 0.96 2.59 3.501 (8) 158
C13—H13A···O2iv 0.97 2.59 3.484 (7) 154

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) x, −y+1/2, z+1/2; (iv) x, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2172).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Grisar, J. M., Claxton, G. P., Bare, T. M., Dage, R. C., Cheng, H. C. & Woodward, J. K. (1981). J. Med. Chem.24, 327–336. [DOI] [PubMed]
  3. Gronnow, M. J., White, R. J., Clark, J. H. & Macquarrie, D. J. (2005). Org. Process Res. Dev.9, 516–518.
  4. Harms, K. & Wocadlo, S. (1995). (2004). XCAD4 University of Marburg, Germany.
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Watanabe, M., Kawada, M., Takamoto, M., Imada, I. & Noguchi, S. (1984). Chem. Pharm. Bull.32, 3372–3377.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808016814/kp2172sup1.cif

e-64-o1242-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016814/kp2172Isup2.hkl

e-64-o1242-Isup2.hkl (118.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES