Abstract
The title compound, [PdCl2(C9H21P)2], is a centrosymmetric mononuclear palladium(II) complex. The PdII atom, which lies on an inversion center, is in a square-planar geometry.
Related literature
For trans-dichlorido-bis(triphenylphosphine)palladium(II), see: Ferguson et al. (1982 ▶). For trans-dichlorido-bis[diphenyl (cyclohexyl)phosphine]palladium(II), see: Meij et al. (2003 ▶). For trans-dichlorido-bis[diphenyl(p-tolyl)phosphine]palladium(II), see: Steyl et al. (2006 ▶). For related literature, see: Baum et al. (2006 ▶); Bedford et al. (2003 ▶); Schultz et al. (1992 ▶).
Experimental
Crystal data
[PdCl2(C9H21P)2]
M r = 497.76
Monoclinic,
a = 8.0919 (3) Å
b = 8.9176 (4) Å
c = 16.1920 (6) Å
β = 92.552 (3)°
V = 1167.26 (8) Å3
Z = 2
Mo Kα radiation
μ = 1.16 mm−1
T = 120 (2) K
0.15 × 0.09 × 0.02 mm
Data collection
Oxford Diffraction KM-4-CCD diffractometer
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006 ▶) T min = 0.791, T max = 0.955
7043 measured reflections
2175 independent reflections
1985 reflections with I > 2σ(I)
R int = 0.042
Refinement
R[F 2 > 2σ(F 2)] = 0.030
wR(F 2) = 0.089
S = 1.13
2175 reflections
112 parameters
H-atom parameters constrained
Δρmax = 1.44 e Å−3
Δρmin = −0.65 e Å−3
Data collection: CrysAlis CCD (Oxford Diffraction, 2006 ▶); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 ▶); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018904/ci2618sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018904/ci2618Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
supplementary crystallographic information
Comment
Expanding our work upon the reactivity of [(R3P)2MCl2] (M = Ni, Pd, Pt) towards tBu2P–PLi–PtBu2 (Baum et al., 2006), we have studied the reaction of tBu2P-PLi-P(tBu)(SiMe3).2THF with [trans-(iPr3P)2PdCl2] in a 1:1 molar ratio in THF. Unreacted [trans-(iPr3P)2PdCl2] was isolated from the toluene solution of reaction product as yellow crystals.
The molecular structure of the title compound is shown in Fig.1. The mononuclear complex is centrosymmetric, with the PdII atom lying on an inversion centre. The geometry around the PdII atom is strictly square-planar. The Pd—P [2.3603 (6) Å] and Pd—Cl [2.3030 (6) Å] distances and P—Pd—Cl [89.92 (2)° and 90.18 (2)°] angles are typical for [trans-(R3P)2PdCl2] (Ferguson et al., 1982; Meij et al., 2003; Steyl et al., 2006; Bedford et al., 2003). The distances in [cis-(R3P)2PdCl2] differ significantly from those reported for [trans-(R3P)2PdCl2]. For [cis-(Me3P)2PdCl2], the related distances are 2.374 (3) Å (Pd—Cl, mean value) and 2.258 (2) Å (Pd—P, mean value) (Schultz et al., 1992). The elongation of Pd—Cl distances in cis isomers compared to trans isomers is due to a strong trans effect of PR3 ligand in a position trans to Cl ligand. The shortening of Pd—P distances in cis isomers are caused by a lack of a second phosphine ligand in the trans position. The Cl ligand exerts only weak trans effect.
Experimental
A solution of tBu2P-PLi-P(tBu)(SiMe3).2THF (139 mg, 0.285 mmol) in tetrahydrofuran (THF, 2 mL) was added dropwise to a suspension of yellow powder of [(iPr3P)2PdCl2] (139 mg, 0.28 mmol) in THF (2 ml) at room temperature. The mixture turned red. After allowed to stand at room temperature for 1 d, the mixture was dried under vacuum at 1 mTorr for 1 h, and the residue was dissolved in toluene (4 ml) and filtered. The solution was kept at 277 K for 2d to obtain small yellow crystals of [trans-(iPr3P)2PdCl2].
Refinement
All H atoms were positioned geometrically and refined using a riding model, with C–H = 0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The highest residual electron-density peak is located 0.86 Å from atom Cl1.
Figures
Fig. 1.
A view of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. Unlabelled atoms are related to labelled atoms by the symmetry operation (1-x, 1-y, -z).
Fig. 2.
Crystal packing of the title compound, viewed approximately along the b axis.
Crystal data
| [PdCl2(C9H21P)2] | F000 = 520 |
| Mr = 497.76 | Dx = 1.416 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 7947 reflections |
| a = 8.0919 (3) Å | θ = 2.3–32.5º |
| b = 8.9176 (4) Å | µ = 1.16 mm−1 |
| c = 16.1920 (6) Å | T = 120 (2) K |
| β = 92.552 (3)º | Prism, colourless |
| V = 1167.26 (8) Å3 | 0.15 × 0.09 × 0.02 mm |
| Z = 2 |
Data collection
| Oxford Diffraction KM-4-CCD diffractometer | 2175 independent reflections |
| Monochromator: graphite | 1985 reflections with I > 2σ(I) |
| Detector resolution: 8.1883 pixels mm-1 | Rint = 0.042 |
| T = 120(2) K | θmax = 25.5º |
| 0.75° wide ω scans | θmin = 2.5º |
| Absorption correction: analytical(CrysAlis RED; Oxford Diffraction, 2006) | h = −9→9 |
| Tmin = 0.791, Tmax = 0.955 | k = −10→6 |
| 7043 measured reflections | l = −19→19 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
| wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0568P)2 + 0.2267P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.13 | (Δ/σ)max = 0.001 |
| 2175 reflections | Δρmax = 1.44 e Å−3 |
| 112 parameters | Δρmin = −0.65 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Pd1 | 0.5 | 0.5 | 0 | 0.01758 (14) | |
| P1 | 0.62758 (8) | 0.33350 (7) | 0.09656 (4) | 0.01777 (17) | |
| Cl1 | 0.53892 (10) | 0.69501 (7) | 0.09206 (4) | 0.0358 (2) | |
| C1 | 0.4699 (3) | 0.2487 (3) | 0.16092 (14) | 0.0218 (5) | |
| H1 | 0.529 | 0.1858 | 0.204 | 0.026* | |
| C2 | 0.3743 (3) | 0.3692 (3) | 0.20534 (17) | 0.0322 (6) | |
| H2A | 0.3178 | 0.4347 | 0.1645 | 0.048* | |
| H2B | 0.4512 | 0.4288 | 0.2404 | 0.048* | |
| H2C | 0.2925 | 0.3217 | 0.2397 | 0.048* | |
| C3 | 0.3525 (4) | 0.1470 (3) | 0.11119 (18) | 0.0352 (7) | |
| H3A | 0.2641 | 0.1132 | 0.1462 | 0.053* | |
| H3B | 0.4134 | 0.0599 | 0.0916 | 0.053* | |
| H3C | 0.3043 | 0.2023 | 0.0637 | 0.053* | |
| C4 | 0.7288 (3) | 0.1727 (3) | 0.04740 (15) | 0.0222 (5) | |
| H4 | 0.639 | 0.1221 | 0.0134 | 0.027* | |
| C5 | 0.7990 (4) | 0.0510 (3) | 0.10597 (17) | 0.0336 (6) | |
| H5A | 0.8222 | −0.0396 | 0.0742 | 0.05* | |
| H5B | 0.7182 | 0.0277 | 0.1474 | 0.05* | |
| H5C | 0.9015 | 0.0871 | 0.1337 | 0.05* | |
| C6 | 0.8569 (4) | 0.2198 (3) | −0.01420 (17) | 0.0355 (7) | |
| H6A | 0.9591 | 0.2505 | 0.0159 | 0.053* | |
| H6B | 0.8136 | 0.304 | −0.0475 | 0.053* | |
| H6C | 0.8802 | 0.1352 | −0.0505 | 0.053* | |
| C7 | 0.7729 (3) | 0.4281 (3) | 0.17166 (15) | 0.0248 (5) | |
| H7 | 0.7088 | 0.512 | 0.1959 | 0.03* | |
| C8 | 0.8372 (4) | 0.3339 (3) | 0.24483 (18) | 0.0393 (7) | |
| H8A | 0.9122 | 0.2566 | 0.2254 | 0.059* | |
| H8B | 0.7439 | 0.2861 | 0.2711 | 0.059* | |
| H8C | 0.8968 | 0.3985 | 0.285 | 0.059* | |
| C9 | 0.9156 (5) | 0.5020 (3) | 0.1284 (2) | 0.0403 (9) | |
| H9A | 0.9727 | 0.5725 | 0.1663 | 0.06* | |
| H9B | 0.8723 | 0.5562 | 0.0794 | 0.06* | |
| H9C | 0.9936 | 0.4249 | 0.1116 | 0.06* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Pd1 | 0.0209 (2) | 0.0166 (2) | 0.01496 (18) | −0.00014 (9) | −0.00173 (12) | −0.00049 (8) |
| P1 | 0.0189 (3) | 0.0187 (3) | 0.0156 (3) | 0.0011 (2) | −0.0004 (2) | 0.0009 (2) |
| Cl1 | 0.0575 (5) | 0.0223 (3) | 0.0259 (3) | 0.0064 (3) | −0.0155 (3) | −0.0074 (3) |
| C1 | 0.0226 (12) | 0.0224 (11) | 0.0205 (12) | 0.0007 (10) | 0.0030 (10) | 0.0034 (10) |
| C2 | 0.0311 (14) | 0.0334 (14) | 0.0329 (14) | 0.0026 (13) | 0.0120 (12) | −0.0013 (12) |
| C3 | 0.0326 (15) | 0.0392 (16) | 0.0344 (15) | −0.0152 (13) | 0.0068 (12) | −0.0051 (12) |
| C4 | 0.0226 (12) | 0.0216 (12) | 0.0225 (12) | 0.0035 (10) | 0.0023 (10) | −0.0014 (10) |
| C5 | 0.0391 (17) | 0.0292 (14) | 0.0329 (15) | 0.0120 (14) | 0.0053 (13) | 0.0000 (13) |
| C6 | 0.0354 (16) | 0.0381 (16) | 0.0341 (15) | 0.0051 (13) | 0.0129 (13) | 0.0002 (12) |
| C7 | 0.0252 (13) | 0.0262 (13) | 0.0225 (12) | −0.0011 (11) | −0.0049 (10) | −0.0019 (10) |
| C8 | 0.0494 (18) | 0.0365 (15) | 0.0301 (15) | 0.0017 (14) | −0.0196 (13) | −0.0004 (12) |
| C9 | 0.0307 (19) | 0.052 (2) | 0.0378 (19) | −0.0199 (12) | −0.0029 (16) | −0.0036 (12) |
Geometric parameters (Å, °)
| Pd1—Cl1i | 2.3030 (6) | C4—C5 | 1.533 (4) |
| Pd1—Cl1 | 2.3030 (6) | C4—H4 | 1 |
| Pd1—P1 | 2.3603 (6) | C5—H5A | 0.98 |
| Pd1—P1i | 2.3603 (6) | C5—H5B | 0.98 |
| P1—C1 | 1.845 (2) | C5—H5C | 0.98 |
| P1—C4 | 1.849 (2) | C6—H6A | 0.98 |
| P1—C7 | 1.856 (2) | C6—H6B | 0.98 |
| C1—C3 | 1.518 (4) | C6—H6C | 0.98 |
| C1—C2 | 1.523 (3) | C7—C8 | 1.525 (4) |
| C1—H1 | 1 | C7—C9 | 1.528 (4) |
| C2—H2A | 0.98 | C7—H7 | 1 |
| C2—H2B | 0.98 | C8—H8A | 0.98 |
| C2—H2C | 0.98 | C8—H8B | 0.98 |
| C3—H3A | 0.98 | C8—H8C | 0.98 |
| C3—H3B | 0.98 | C9—H9A | 0.98 |
| C3—H3C | 0.98 | C9—H9B | 0.98 |
| C4—C6 | 1.529 (3) | C9—H9C | 0.98 |
| Cl1i—Pd1—Cl1 | 180.00 (3) | C6—C4—H4 | 105.2 |
| Cl1i—Pd1—P1 | 89.82 (2) | C5—C4—H4 | 105.2 |
| Cl1—Pd1—P1 | 90.18 (2) | P1—C4—H4 | 105.2 |
| Cl1i—Pd1—P1i | 90.18 (2) | C4—C5—H5A | 109.5 |
| Cl1—Pd1—P1i | 89.82 (2) | C4—C5—H5B | 109.5 |
| P1—Pd1—P1i | 180 | H5A—C5—H5B | 109.5 |
| C1—P1—C4 | 104.84 (11) | C4—C5—H5C | 109.5 |
| C1—P1—C7 | 104.47 (11) | H5A—C5—H5C | 109.5 |
| C4—P1—C7 | 110.77 (12) | H5B—C5—H5C | 109.5 |
| C1—P1—Pd1 | 109.81 (8) | C4—C6—H6A | 109.5 |
| C4—P1—Pd1 | 113.07 (8) | C4—C6—H6B | 109.5 |
| C7—P1—Pd1 | 113.18 (8) | H6A—C6—H6B | 109.5 |
| C3—C1—C2 | 110.7 (2) | C4—C6—H6C | 109.5 |
| C3—C1—P1 | 112.16 (17) | H6A—C6—H6C | 109.5 |
| C2—C1—P1 | 110.86 (17) | H6B—C6—H6C | 109.5 |
| C3—C1—H1 | 107.6 | C8—C7—C9 | 110.8 (2) |
| C2—C1—H1 | 107.6 | C8—C7—P1 | 116.30 (18) |
| P1—C1—H1 | 107.6 | C9—C7—P1 | 111.43 (19) |
| C1—C2—H2A | 109.5 | C8—C7—H7 | 105.8 |
| C1—C2—H2B | 109.5 | C9—C7—H7 | 105.8 |
| H2A—C2—H2B | 109.5 | P1—C7—H7 | 105.8 |
| C1—C2—H2C | 109.5 | C7—C8—H8A | 109.5 |
| H2A—C2—H2C | 109.5 | C7—C8—H8B | 109.5 |
| H2B—C2—H2C | 109.5 | H8A—C8—H8B | 109.5 |
| C1—C3—H3A | 109.5 | C7—C8—H8C | 109.5 |
| C1—C3—H3B | 109.5 | H8A—C8—H8C | 109.5 |
| H3A—C3—H3B | 109.5 | H8B—C8—H8C | 109.5 |
| C1—C3—H3C | 109.5 | C7—C9—H9A | 109.5 |
| H3A—C3—H3C | 109.5 | C7—C9—H9B | 109.5 |
| H3B—C3—H3C | 109.5 | H9A—C9—H9B | 109.5 |
| C6—C4—C5 | 110.8 (2) | C7—C9—H9C | 109.5 |
| C6—C4—P1 | 113.17 (18) | H9A—C9—H9C | 109.5 |
| C5—C4—P1 | 116.20 (17) | H9B—C9—H9C | 109.5 |
Symmetry codes: (i) −x+1, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2618).
References
- Baum, E., Matern, E., Robaszkiewicz, A. & Pikies, J. (2006). Z. Anorg. Allg. Chem.632, 1073–1077.
- Bedford, R. B., Haselwood, S. L., Limmert, M. E., Brown, J. M., Ramdeehul, S., Cowley, A. R., Coles, S. J. & Hursthouse, M. B. (2003). Organometallics, 22, 1364–1371.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Ferguson, G., McCrindle, R., McAlees, A. J. & Parvez, M. (1982). Acta Cryst. B38, 2679–2681.
- Meij, A. M. M., Muller, A. & Roodt, A. (2003). Acta Cryst. E59, m44–m45. [DOI] [PubMed]
- Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
- Schultz, G., Subbotina, N. Y., Jensen, C. M., Golen, J. A. & Hargittai, J. (1992). Inorg. Chim. Acta, 191, 85–90.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Steyl, G., Kirsten, L. & Roodt, A. (2006). Acta Cryst. E62, m1705–m1707.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018904/ci2618sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018904/ci2618Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


