Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1293. doi: 10.1107/S1600536808017923

9-Ethyl-3,6-diformyl-9H-carbazole

Jun Jie Wang a, Xian Zhang b, Bao Qin Zhang a, Gang Wang c, Xiao Qiang Yu a,*
PMCID: PMC2961647  PMID: 21202923

Abstract

The structure of the title compound, C16H13NO2, was determined as a part of a project on the synthesis of new compounds which can make two-photon absorptions. In the crystal structure, both aldehyde groups are located within the carbazole plane. One of these groups is disordered and was refined using a split model with site-occupation factors for each position of 0.5.

Related literature

For the synthesis of 9-ethyicarbazole, see: Li et al. (2001).graphic file with name e-64-o1293-scheme1.jpg

Experimental

Crystal data

  • C16H13NO2

  • M r = 251.27

  • Monoclinic, Inline graphic

  • a = 13.5475 (3) Å

  • b = 6.69540 (10) Å

  • c = 14.1840 (2) Å

  • β = 100.5100 (10)°

  • V = 1264.99 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.46 × 0.32 × 0.28 mm

Data collection

  • Bruker APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005) T min = 0.962, T max = 0.978

  • 7890 measured reflections

  • 2810 independent reflections

  • 2123 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.112

  • S = 1.05

  • 2810 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017923/nc2104sup1.cif

e-64-o1293-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017923/nc2104Isup2.hkl

e-64-o1293-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant for the National Science Foundation of China (50673053), the State Key Program of China (2004CB719803), NSFC/RGC (50218001), the National Science Foundation of China (50173015). We also thank Dr Wang Xin Qiang for looking at this paper.

supplementary crystallographic information

Experimental

9-Ethylcarbazole was synthesized according to the literature (Li et al. , 2001). Anhydrous DMF (22 mL, 0.3 mol) was added dropwisely to POCl3 (28 ml, 0.3 mol) under stirring in an ice bath. After 30 minute a white precipitate is obtained and a solution of 9-ethylcarbazole (3.155 g, 16 mmol) in DMF (20 mL) were added. The reaction mixture was slowly heated to 373 K and stirred at this temperature for 30 h and then cooled to room temperature. The brown viscous oily production was poured into the ice-water and shaken; the pH value of the solution was adjusted to 8 by dropping aqueous sodium hydroxide and sodium bicarbonate. It was stirred for another 2 h at pH=8 at room temperature. The aqueous layer was extracted with dichloromethane (3 × 100 ml) and the combined organic layers were washed three times with 100 mL of water and dried over anhydrous magnesium sulfate. Afterwards the solvent was evaporated under reduced pressure. The residue was dissolved in a minimal amount of dichloromethane and then purified by silica-gel column chromatography using dichloromethane as eluent. The product was recrystallized from dichloromethane to give high quality dark yellow crystals used for X-ray structure analysis.

Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups). Their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) of the equivalent displacement parameter of their parent atoms. The O2 oxygen atom is disordered over two positions and was refined using a split model with half occupancy for each site.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of title compound with labelling and 50% probability displacement ellipsoids.

Crystal data

C16H13NO2 F000 = 528
Mr = 251.27 Dx = 1.319 Mg m3
Monoclinic, P2(1)/n Mo Kα radiation λ = 0.71073 Å
a = 13.5475 (3) Å Cell parameters from 3121 reflections
b = 6.69540 (10) Å θ = 2.9–27.0º
c = 14.1840 (2) Å µ = 0.09 mm1
β = 100.5100 (10)º T = 293 (2) K
V = 1264.99 (4) Å3 Block, colourless
Z = 4 0.46 × 0.32 × 0.28 mm

Data collection

Bruker APEX2 CCD area-detector diffractometer 2810 independent reflections
Radiation source: fine-focus sealed tube 2123 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 293(2) K θmax = 27.5º
φ and ω scans θmin = 1.9º
Absorption correction: multi-scan(APEX2; Bruker, 2005) h = −15→17
Tmin = 0.962, Tmax = 0.978 k = −8→8
7890 measured reflections l = −18→18

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038   w = 1/[σ2(Fo2) + (0.0515P)2 + 0.1926P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.17 e Å3
2810 reflections Δρmin = −0.16 e Å3
183 parameters Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 1.02612 (11) 0.7739 (2) 0.65681 (10) 0.1009 (5)
O2 0.8577 (2) −0.1440 (4) 1.19028 (19) 0.0963 (8) 0.50
O2' 0.9276 (2) −0.1336 (4) 1.1217 (2) 0.0830 (8) 0.50
N1 0.73234 (8) 0.68042 (17) 0.96028 (7) 0.0500 (3)
C1 0.55071 (11) 0.7452 (3) 0.91838 (13) 0.0713 (4)
H1A 0.5513 0.7464 0.8508 0.107*
H1B 0.4989 0.8327 0.9318 0.107*
H1C 0.5381 0.6119 0.9381 0.107*
C2 0.65035 (10) 0.8149 (2) 0.97202 (11) 0.0573 (4)
H2A 0.6642 0.9470 0.9495 0.069*
H2B 0.6473 0.8252 1.0396 0.069*
C3 0.79421 (9) 0.69945 (19) 0.89373 (9) 0.0459 (3)
C4 0.79749 (10) 0.8498 (2) 0.82587 (10) 0.0557 (3)
H4 0.7532 0.9571 0.8198 0.067*
C5 0.86839 (11) 0.8333 (2) 0.76856 (10) 0.0585 (4)
H5 0.8715 0.9308 0.7225 0.070*
C6 0.93648 (10) 0.6734 (2) 0.77748 (9) 0.0523 (3)
C7 0.93244 (9) 0.5240 (2) 0.84424 (8) 0.0485 (3)
H7 0.9774 0.4178 0.8501 0.058*
C8 0.86064 (9) 0.53478 (19) 0.90209 (8) 0.0440 (3)
C9 0.83555 (9) 0.40894 (19) 0.97708 (8) 0.0452 (3)
C10 0.75611 (9) 0.5055 (2) 1.01106 (8) 0.0473 (3)
C11 0.71439 (11) 0.4259 (2) 1.08601 (10) 0.0582 (4)
H11 0.6627 0.4907 1.1088 0.070*
C12 0.75280 (12) 0.2485 (2) 1.12461 (10) 0.0626 (4)
H12 0.7263 0.1923 1.1745 0.075*
C13 0.83086 (11) 0.1487 (2) 1.09134 (9) 0.0573 (4)
C14 0.87244 (10) 0.2299 (2) 1.01732 (9) 0.0510 (3)
H14 0.9244 0.1646 0.9952 0.061*
C15 1.01501 (12) 0.6612 (3) 0.71893 (11) 0.0666 (4)
H15 1.0603 0.5559 0.7315 0.080*
C16 0.87062 (18) −0.0411 (3) 1.13397 (14) 0.0825 (6)
H16A 0.9220 −0.0876 1.1043 0.099* 0.50
H16B 0.8377 −0.0871 1.1818 0.099* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1167 (11) 0.1034 (10) 0.1002 (9) −0.0055 (8) 0.0663 (9) 0.0204 (8)
O2 0.128 (2) 0.0828 (17) 0.0829 (16) −0.0009 (16) 0.0324 (16) 0.0299 (14)
O2' 0.0887 (18) 0.0589 (14) 0.1029 (18) 0.0237 (13) 0.0213 (14) 0.0161 (13)
N1 0.0436 (6) 0.0549 (7) 0.0544 (6) 0.0046 (5) 0.0166 (5) 0.0001 (5)
C1 0.0504 (8) 0.0671 (10) 0.0958 (11) 0.0074 (7) 0.0122 (8) −0.0025 (9)
C2 0.0514 (8) 0.0556 (8) 0.0688 (8) 0.0064 (6) 0.0212 (6) −0.0073 (7)
C3 0.0385 (6) 0.0522 (7) 0.0475 (6) −0.0009 (5) 0.0090 (5) −0.0009 (5)
C4 0.0505 (7) 0.0547 (8) 0.0619 (8) 0.0052 (6) 0.0103 (6) 0.0085 (6)
C5 0.0575 (8) 0.0622 (9) 0.0573 (7) −0.0046 (7) 0.0142 (6) 0.0120 (7)
C6 0.0461 (7) 0.0622 (8) 0.0505 (7) −0.0081 (6) 0.0140 (5) −0.0001 (6)
C7 0.0404 (6) 0.0550 (8) 0.0509 (6) −0.0004 (5) 0.0103 (5) −0.0014 (6)
C8 0.0386 (6) 0.0494 (7) 0.0440 (6) −0.0013 (5) 0.0078 (5) −0.0001 (5)
C9 0.0405 (6) 0.0512 (7) 0.0441 (6) −0.0021 (5) 0.0078 (5) −0.0012 (5)
C10 0.0429 (6) 0.0535 (7) 0.0461 (6) −0.0024 (5) 0.0102 (5) −0.0035 (5)
C11 0.0570 (8) 0.0691 (9) 0.0531 (7) −0.0048 (7) 0.0218 (6) −0.0034 (7)
C12 0.0695 (9) 0.0721 (10) 0.0492 (7) −0.0153 (8) 0.0189 (7) 0.0023 (7)
C13 0.0637 (9) 0.0550 (8) 0.0507 (7) −0.0098 (7) 0.0040 (6) 0.0046 (6)
C14 0.0483 (7) 0.0521 (8) 0.0519 (7) −0.0001 (6) 0.0074 (5) 0.0003 (6)
C15 0.0654 (9) 0.0742 (10) 0.0657 (9) −0.0152 (8) 0.0268 (7) −0.0035 (8)
C16 0.1016 (15) 0.0660 (11) 0.0722 (11) −0.0161 (11) −0.0043 (10) 0.0172 (10)

Geometric parameters (Å, °)

O1—C15 1.1902 (19) C6—C7 1.3852 (18)
O2—C16 1.093 (3) C6—C15 1.466 (2)
O2—H16B 0.4697 C7—C8 1.3842 (17)
O2'—C16 1.029 (3) C7—H7 0.9300
N1—C3 1.3778 (16) C8—C9 1.4453 (17)
N1—C10 1.3818 (17) C9—C14 1.3816 (18)
N1—C2 1.4628 (16) C9—C10 1.4134 (17)
C1—C2 1.498 (2) C10—C11 1.3974 (18)
C1—H1A 0.9600 C11—C12 1.370 (2)
C1—H1B 0.9600 C11—H11 0.9300
C1—H1C 0.9600 C12—C13 1.403 (2)
C2—H2A 0.9700 C12—H12 0.9300
C2—H2B 0.9700 C13—C14 1.3896 (19)
C3—C4 1.3990 (18) C13—C16 1.467 (2)
C3—C8 1.4144 (17) C14—H14 0.9300
C4—C5 1.371 (2) C15—H15 0.9300
C4—H4 0.9300 C16—H16A 0.9300
C5—C6 1.404 (2) C16—H16B 0.9300
C5—H5 0.9300
C3—N1—C10 108.81 (10) C7—C8—C9 133.70 (12)
C3—N1—C2 126.20 (11) C3—C8—C9 106.54 (11)
C10—N1—C2 124.89 (11) C14—C9—C10 119.79 (11)
C2—C1—H1A 109.5 C14—C9—C8 133.94 (12)
C2—C1—H1B 109.5 C10—C9—C8 106.27 (11)
H1A—C1—H1B 109.5 N1—C10—C11 129.17 (12)
C2—C1—H1C 109.5 N1—C10—C9 109.24 (11)
H1A—C1—H1C 109.5 C11—C10—C9 121.58 (13)
H1B—C1—H1C 109.5 C12—C11—C10 117.24 (13)
N1—C2—C1 112.52 (12) C12—C11—H11 121.4
N1—C2—H2A 109.1 C10—C11—H11 121.4
C1—C2—H2A 109.1 C11—C12—C13 122.20 (13)
N1—C2—H2B 109.1 C11—C12—H12 118.9
C1—C2—H2B 109.1 C13—C12—H12 118.9
H2A—C2—H2B 107.8 C14—C13—C12 120.13 (13)
N1—C3—C4 129.60 (12) C14—C13—C16 118.77 (16)
N1—C3—C8 109.13 (11) C12—C13—C16 121.09 (15)
C4—C3—C8 121.26 (12) C9—C14—C13 119.05 (13)
C5—C4—C3 117.61 (13) C9—C14—H14 120.5
C5—C4—H4 121.2 C13—C14—H14 120.4
C3—C4—H4 121.2 O1—C15—C6 125.94 (17)
C4—C5—C6 121.85 (13) O1—C15—H15 117.0
C4—C5—H5 119.1 C6—C15—H15 117.0
C6—C5—H5 119.1 O2'—C16—C13 133.0 (3)
C7—C6—C5 120.34 (12) O2—C16—C13 138.7 (3)
C7—C6—C15 118.06 (13) O2—C16—H16A 110.6
C5—C6—C15 121.58 (13) C13—C16—H16A 110.6
C8—C7—C6 119.15 (12) O2'—C16—H16B 113.5
C8—C7—H7 120.4 C13—C16—H16B 113.5
C6—C7—H7 120.4 H16A—C16—H16B 135.8
C7—C8—C3 119.75 (11)
C3—N1—C2—C1 94.54 (16) C3—N1—C10—C11 179.12 (13)
C10—N1—C2—C1 −81.23 (17) C2—N1—C10—C11 −4.5 (2)
C10—N1—C3—C4 179.26 (13) C3—N1—C10—C9 0.26 (14)
C2—N1—C3—C4 2.9 (2) C2—N1—C10—C9 176.66 (11)
C10—N1—C3—C8 −0.76 (13) C14—C9—C10—N1 −179.99 (11)
C2—N1—C3—C8 −177.10 (12) C8—C9—C10—N1 0.34 (13)
N1—C3—C4—C5 179.09 (13) C14—C9—C10—C11 1.04 (18)
C8—C3—C4—C5 −0.88 (19) C8—C9—C10—C11 −178.63 (11)
C3—C4—C5—C6 −0.7 (2) N1—C10—C11—C12 −179.57 (12)
C4—C5—C6—C7 1.2 (2) C9—C10—C11—C12 −0.83 (19)
C4—C5—C6—C15 −177.23 (13) C10—C11—C12—C13 0.1 (2)
C5—C6—C7—C8 −0.16 (19) C11—C12—C13—C14 0.5 (2)
C15—C6—C7—C8 178.34 (12) C11—C12—C13—C16 179.97 (14)
C6—C7—C8—C3 −1.36 (17) C10—C9—C14—C13 −0.47 (18)
C6—C7—C8—C9 179.95 (13) C8—C9—C14—C13 179.09 (13)
N1—C3—C8—C7 −178.05 (11) C12—C13—C14—C9 −0.2 (2)
C4—C3—C8—C7 1.92 (18) C16—C13—C14—C9 −179.78 (12)
N1—C3—C8—C9 0.96 (13) C7—C6—C15—O1 177.41 (16)
C4—C3—C8—C9 −179.07 (12) C5—C6—C15—O1 −4.1 (2)
C7—C8—C9—C14 −1.6 (2) C14—C13—C16—O2' 1.6 (4)
C3—C8—C9—C14 179.62 (13) C12—C13—C16—O2' −177.9 (3)
C7—C8—C9—C10 178.03 (13) C14—C13—C16—O2 179.8 (3)
C3—C8—C9—C10 −0.78 (13) C12—C13—C16—O2 0.3 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2104).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Li, Z., Li, J. & Qin, J. G. (2001). Chemistry Reagent, 23, 297–297.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017923/nc2104sup1.cif

e-64-o1293-sup1.cif (18.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017923/nc2104Isup2.hkl

e-64-o1293-Isup2.hkl (135.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES