Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m859–m860. doi: 10.1107/S1600536808015730

Dibromido{2-[2-(piperidinium-1-yl)ethyl­imino­meth­yl]phenolato}zinc(II) monohydrate

Yi-Jun Wei a,*, Feng-Wu Wang a, Qi-Yong Zhu a
PMCID: PMC2961651  PMID: 21202736

Abstract

The asymmetric unit of the title compound, [ZnBr2(C14H20N2O)]·H2O, consists of a mononuclear Schiff base zinc(II) complex mol­ecule and a solvent water mol­ecule. The ZnII atom is four-coordinated in an approximately tetra­hedral geometry, binding to the imine N and phenolate O atoms of the neutral zwitterionic Schiff base ligand and to two terminal Br anions. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯Br and O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For the background to Schiff base zinc(II) complexes, see: Bhosekar et al. (2006); Chisholm et al. (2001); Jian et al. (2004); Lacroix et al. (1996); Tatar et al. (2002). For related structures, see: Ma, Gu et al. (2006); Ma, Lv et al. (2006); Peng & Hou (2006); Peng et al. (2006); Wei et al. (2007); Zhang et al. (2008); Zhu et al. (2007).graphic file with name e-64-0m859-scheme1.jpg

Experimental

Crystal data

  • [ZnBr2(C14H20N2O)]·H2O

  • M r = 475.53

  • Triclinic, Inline graphic

  • a = 9.2997 (18) Å

  • b = 10.1776 (17) Å

  • c = 11.1667 (18) Å

  • α = 71.510 (2)°

  • β = 71.215 (2)°

  • γ = 67.571 (2)°

  • V = 901.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.80 mm−1

  • T = 298 (2) K

  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.390, T max = 0.422 (expected range = 0.326–0.352)

  • 5468 measured reflections

  • 3983 independent reflections

  • 2891 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.091

  • S = 1.02

  • 3983 reflections

  • 199 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015730/sj2508sup1.cif

e-64-0m859-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015730/sj2508Isup2.hkl

e-64-0m859-Isup2.hkl (195.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—O1 1.936 (2)
Zn1—N1 2.024 (3)
Zn1—Br1 2.3417 (7)
Zn1—Br2 2.3991 (7)
O1—Zn1—N1 93.91 (11)
O1—Zn1—Br1 116.12 (8)
N1—Zn1—Br1 113.04 (8)
O1—Zn1—Br2 109.78 (8)
N1—Zn1—Br2 108.84 (9)
Br1—Zn1—Br2 113.42 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.90 (4) 1.89 (4) 2.777 (4) 169 (4)
O2—H2A⋯Br2i 0.85 (4) 2.57 (4) 3.399 (3) 165 (4)
O2—H2B⋯O1ii 0.86 (3) 1.93 (4) 2.762 (4) 165 (5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank the Education Office of Anhui Province, People’s Republic of China, for research grant No. KJ2007A126ZC.

supplementary crystallographic information

Comment

Zinc(II) complexes derived from Schiff base ligands have been studied extensively due to their interesting structures and wide applications (Lacroix et al., 1996; Chisholm et al., 2001; Jian et al., 2004; Tatar et al., 2002; Bhosekar et al., 2006). Recently, we have reported two Schiff base zinc(II) complexes with bromide ligands (Wei et al., 2007; Zhu et al., 2007). As a continuation of our work on the structures of such complexes, we report herein the crystal structure of the new title complex, (I), which is isostructural with the zinc(II) complex with chloride ligands (Zhang et al., 2008).

The tetrahedral coordination sphere of ZnII atom in (I) is formed by the imine N and phenolate O atoms of the Schiff base ligand and by two terminal Br- anions (Fig. 1). The coordinate bond distances (Table 1) are typical and comparable with the values in other similar zinc(II) complexes (Peng & Hou, 2006; Peng et al., 2006; Ma, Gu et al., 2006; Ma, Lv et al., 2006). The O1—Zn1—N1 and O1—Zn1—Br1 bond angles deviate most from ideal tetrahedral geometry with values of 93.91 (11) and 116.12 (8)°, respectively. The other angles in the coordination sphere are in the range 108.84 (9)–113.42 (2)° (Table 1).

In the crystal structure of (I), molecules are linked through intermolecular O—H···Br and O—H···O hydrogen bonds (Table 2), forming chains running along the b axis (Fig. 2).

Experimental

Compound (I) was obtained by stirring of salicylaldehyde (0.1 mmol, 12.2 mg), 2-piperidin-1-ylethylamine (0.1 mmol, 12.8 mg), and zinc(II) bromide (0.1 mmol, 22.5 mg) in methanol (20 ml) for 30 min at room temperature. The reaction mixture was fitered. Yellow block-shaped single crystals suitable for X-ray diffraction formed from the filtrate after one day.

Refinement

Atoms H2, H2A and H2B were located in a difference Fourier map and refined isotropically, with the N—H, O—H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atom positions were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) values set at 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), shown with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing of (I), viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

[ZnBr2(C14H20N2O)]·H2O Z = 2
Mr = 475.53 F000 = 472
Triclinic, P1 Dx = 1.751 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 9.2997 (18) Å Cell parameters from 1797 reflections
b = 10.1776 (17) Å θ = 2.2–25.4º
c = 11.1667 (18) Å µ = 5.80 mm1
α = 71.510 (2)º T = 298 (2) K
β = 71.215 (2)º Block, yellow
γ = 67.571 (2)º 0.20 × 0.20 × 0.18 mm
V = 901.8 (3) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3983 independent reflections
Radiation source: fine-focus sealed tube 2891 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 298(2) K θmax = 27.5º
ω scans θmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996) h = −12→9
Tmin = 0.390, Tmax = 0.422 k = −13→12
5468 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091   w = 1/[σ2(Fo2) + (0.0405P)2 + 0.3508P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3983 reflections Δρmax = 0.72 e Å3
199 parameters Δρmin = −0.55 e Å3
4 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.82333 (5) −0.20793 (4) 0.11443 (4) 0.03909 (13)
Br1 0.93736 (6) −0.24561 (5) 0.28619 (4) 0.06059 (15)
Br2 0.56849 (5) −0.24885 (5) 0.18395 (4) 0.05682 (14)
O1 0.9582 (3) −0.3089 (3) −0.0226 (2) 0.0451 (6)
O2 0.7190 (3) 0.4568 (3) 0.0481 (3) 0.0515 (7)
N1 0.8013 (4) −0.0074 (3) −0.0039 (3) 0.0406 (7)
N2 0.5644 (4) 0.2574 (3) 0.2120 (3) 0.0420 (7)
C1 0.8738 (4) −0.1069 (4) −0.1951 (3) 0.0378 (8)
C2 0.9415 (4) −0.2555 (4) −0.1434 (3) 0.0379 (8)
C3 0.9993 (5) −0.3518 (4) −0.2277 (4) 0.0451 (9)
H3 1.0451 −0.4508 −0.1960 0.054*
C4 0.9897 (5) −0.3031 (5) −0.3550 (4) 0.0555 (11)
H4 1.0283 −0.3696 −0.4077 0.067*
C5 0.9234 (6) −0.1561 (5) −0.4069 (4) 0.0594 (12)
H5 0.9176 −0.1236 −0.4935 0.071*
C6 0.8668 (5) −0.0600 (5) −0.3273 (4) 0.0513 (10)
H6 0.8225 0.0387 −0.3611 0.062*
C7 0.8178 (4) 0.0091 (4) −0.1258 (4) 0.0409 (8)
H7 0.7915 0.1043 −0.1745 0.049*
C8 0.7581 (5) 0.1241 (4) 0.0443 (4) 0.0552 (11)
H8A 0.7560 0.2080 −0.0279 0.066*
H8B 0.8374 0.1140 0.0884 0.066*
C9 0.5982 (5) 0.1467 (5) 0.1357 (5) 0.0633 (12)
H9A 0.5928 0.0547 0.1952 0.076*
H9B 0.5166 0.1790 0.0870 0.076*
C10 0.3889 (5) 0.3298 (5) 0.2454 (5) 0.0594 (11)
H10A 0.3359 0.2573 0.2962 0.071*
H10B 0.3502 0.3761 0.1664 0.071*
C11 0.3486 (6) 0.4435 (6) 0.3223 (6) 0.0836 (17)
H11A 0.3915 0.5216 0.2677 0.100*
H11B 0.2334 0.4848 0.3476 0.100*
C12 0.4153 (7) 0.3795 (7) 0.4409 (6) 0.094 (2)
H12A 0.3925 0.4556 0.4853 0.113*
H12B 0.3651 0.3077 0.4997 0.113*
C13 0.5908 (6) 0.3095 (7) 0.4042 (5) 0.0835 (17)
H13A 0.6325 0.2653 0.4819 0.100*
H13B 0.6414 0.3830 0.3510 0.100*
C14 0.6302 (6) 0.1951 (5) 0.3306 (5) 0.0701 (13)
H14A 0.7453 0.1528 0.3059 0.084*
H14B 0.5862 0.1179 0.3862 0.084*
H2B 0.8210 (13) 0.423 (5) 0.029 (5) 0.080*
H2A 0.699 (4) 0.524 (4) 0.086 (4) 0.080*
H2 0.611 (5) 0.327 (4) 0.168 (4) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0453 (3) 0.0381 (2) 0.0358 (2) −0.01543 (19) −0.00516 (18) −0.01193 (18)
Br1 0.0684 (3) 0.0803 (3) 0.0459 (2) −0.0337 (3) −0.0178 (2) −0.0131 (2)
Br2 0.0462 (3) 0.0559 (3) 0.0720 (3) −0.0217 (2) −0.0069 (2) −0.0184 (2)
O1 0.0509 (16) 0.0409 (14) 0.0377 (14) −0.0066 (12) −0.0070 (12) −0.0138 (11)
O2 0.0503 (17) 0.0479 (16) 0.0572 (18) −0.0181 (14) −0.0049 (14) −0.0170 (13)
N1 0.0497 (19) 0.0346 (16) 0.0412 (17) −0.0198 (14) −0.0023 (14) −0.0134 (13)
N2 0.0438 (19) 0.0411 (18) 0.0415 (17) −0.0163 (15) −0.0001 (14) −0.0157 (14)
C1 0.041 (2) 0.041 (2) 0.0329 (18) −0.0188 (17) −0.0024 (15) −0.0099 (15)
C2 0.033 (2) 0.044 (2) 0.0387 (19) −0.0167 (16) −0.0012 (15) −0.0128 (16)
C3 0.046 (2) 0.044 (2) 0.049 (2) −0.0169 (18) −0.0028 (18) −0.0200 (18)
C4 0.059 (3) 0.071 (3) 0.049 (2) −0.030 (2) 0.001 (2) −0.031 (2)
C5 0.071 (3) 0.081 (3) 0.034 (2) −0.040 (3) −0.002 (2) −0.013 (2)
C6 0.057 (3) 0.054 (2) 0.042 (2) −0.023 (2) −0.0084 (19) −0.0033 (18)
C7 0.039 (2) 0.0348 (19) 0.047 (2) −0.0154 (16) −0.0043 (17) −0.0070 (16)
C8 0.064 (3) 0.043 (2) 0.059 (3) −0.022 (2) 0.001 (2) −0.0222 (19)
C9 0.061 (3) 0.063 (3) 0.076 (3) −0.026 (2) 0.001 (2) −0.037 (2)
C10 0.046 (3) 0.062 (3) 0.074 (3) −0.018 (2) −0.011 (2) −0.022 (2)
C11 0.040 (3) 0.071 (3) 0.140 (5) −0.011 (2) 0.002 (3) −0.056 (4)
C12 0.083 (4) 0.141 (5) 0.084 (4) −0.056 (4) 0.023 (3) −0.073 (4)
C13 0.077 (4) 0.140 (5) 0.050 (3) −0.045 (4) −0.013 (3) −0.030 (3)
C14 0.055 (3) 0.074 (3) 0.065 (3) −0.011 (3) −0.019 (2) −0.002 (3)

Geometric parameters (Å, °)

Zn1—O1 1.936 (2) C5—H5 0.9300
Zn1—N1 2.024 (3) C6—H6 0.9300
Zn1—Br1 2.3417 (7) C7—H7 0.9300
Zn1—Br2 2.3991 (7) C8—C9 1.488 (6)
O1—C2 1.321 (4) C8—H8A 0.9700
O2—H2B 0.86 (3) C8—H8B 0.9700
O2—H2A 0.85 (4) C9—H9A 0.9700
N1—C7 1.282 (5) C9—H9B 0.9700
N1—C8 1.467 (4) C10—C11 1.519 (6)
N2—C10 1.487 (5) C10—H10A 0.9700
N2—C14 1.491 (5) C10—H10B 0.9700
N2—C9 1.503 (5) C11—C12 1.496 (8)
N2—H2 0.90 (4) C11—H11A 0.9700
C1—C2 1.404 (5) C11—H11B 0.9700
C1—C6 1.415 (5) C12—C13 1.485 (7)
C1—C7 1.454 (5) C12—H12A 0.9700
C2—C3 1.411 (5) C12—H12B 0.9700
C3—C4 1.370 (6) C13—C14 1.502 (7)
C3—H3 0.9300 C13—H13A 0.9700
C4—C5 1.389 (6) C13—H13B 0.9700
C4—H4 0.9300 C14—H14A 0.9700
C5—C6 1.371 (6) C14—H14B 0.9700
O1—Zn1—N1 93.91 (11) C9—C8—H8A 109.7
O1—Zn1—Br1 116.12 (8) N1—C8—H8B 109.7
N1—Zn1—Br1 113.04 (8) C9—C8—H8B 109.7
O1—Zn1—Br2 109.78 (8) H8A—C8—H8B 108.2
N1—Zn1—Br2 108.84 (9) C8—C9—N2 112.2 (3)
Br1—Zn1—Br2 113.42 (2) C8—C9—H9A 109.2
C2—O1—Zn1 121.6 (2) N2—C9—H9A 109.2
H2B—O2—H2A 105 (2) C8—C9—H9B 109.2
C7—N1—C8 117.3 (3) N2—C9—H9B 109.2
C7—N1—Zn1 119.8 (2) H9A—C9—H9B 107.9
C8—N1—Zn1 122.8 (2) N2—C10—C11 110.8 (3)
C10—N2—C14 111.0 (3) N2—C10—H10A 109.5
C10—N2—C9 108.7 (3) C11—C10—H10A 109.5
C14—N2—C9 113.6 (3) N2—C10—H10B 109.5
C10—N2—H2 108 (3) C11—C10—H10B 109.5
C14—N2—H2 102 (3) H10A—C10—H10B 108.1
C9—N2—H2 113 (3) C12—C11—C10 111.6 (4)
C2—C1—C6 119.5 (3) C12—C11—H11A 109.3
C2—C1—C7 125.2 (3) C10—C11—H11A 109.3
C6—C1—C7 115.1 (3) C12—C11—H11B 109.3
O1—C2—C1 123.9 (3) C10—C11—H11B 109.3
O1—C2—C3 118.6 (3) H11A—C11—H11B 108.0
C1—C2—C3 117.4 (3) C13—C12—C11 110.0 (4)
C4—C3—C2 121.6 (4) C13—C12—H12A 109.7
C4—C3—H3 119.2 C11—C12—H12A 109.7
C2—C3—H3 119.2 C13—C12—H12B 109.7
C3—C4—C5 121.2 (4) C11—C12—H12B 109.7
C3—C4—H4 119.4 H12A—C12—H12B 108.2
C5—C4—H4 119.4 C12—C13—C14 110.9 (4)
C6—C5—C4 118.4 (4) C12—C13—H13A 109.5
C6—C5—H5 120.8 C14—C13—H13A 109.5
C4—C5—H5 120.8 C12—C13—H13B 109.5
C5—C6—C1 121.8 (4) C14—C13—H13B 109.5
C5—C6—H6 119.1 H13A—C13—H13B 108.0
C1—C6—H6 119.1 N2—C14—C13 111.4 (4)
N1—C7—C1 126.2 (3) N2—C14—H14A 109.4
N1—C7—H7 116.9 C13—C14—H14A 109.4
C1—C7—H7 116.9 N2—C14—H14B 109.4
N1—C8—C9 109.9 (3) C13—C14—H14B 109.4
N1—C8—H8A 109.7 H14A—C14—H14B 108.0

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O2 0.90 (4) 1.89 (4) 2.777 (4) 169 (4)
O2—H2A···Br2i 0.85 (4) 2.57 (4) 3.399 (3) 165 (4)
O2—H2B···O1ii 0.86 (3) 1.93 (4) 2.762 (4) 165 (5)

Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2508).

References

  1. Bhosekar, G., Jess, I. & Näther, C. (2006). Acta Cryst. E62, m2073–m2074.
  2. Bruker (2002). SMART, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chisholm, M. H., Gallucci, J. C. & Zhen, H. (2001). Inorg. Chem.40, 5051–5054. [DOI] [PubMed]
  4. Jian, F., Li, C., Sun, P. & Xiao, H. (2004). Acta Cryst. E60, m1811–m1812.
  5. Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater.8, 541–545.
  6. Ma, J.-Y., Gu, S.-H., Guo, J.-W., Lv, B.-L. & Yin, W.-P. (2006). Acta Cryst. E62, m1437–m1438.
  7. Ma, J.-Y., Lv, B.-L., Gu, S.-H., Guo, J.-W. & Yin, W.-P. (2006). Acta Cryst. E62, m1322–m1323.
  8. Peng, S.-J. & Hou, H.-Y. (2006). Acta Cryst. E62, m2947–m2949.
  9. Peng, S.-J., Zhou, C.-S. & Yang, T. (2006). Acta Cryst. E62, m1413–m1415.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tatar, L., Atakol, O. & Ülkü, D. (2002). Acta Cryst. E58, m83–m85.
  13. Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2007). Acta Cryst. E63, m654–m655.
  14. Zhang, D.-F., Zhou, M.-H. & Yuan, C.-J. (2008). Acta Cryst. E64, m825–m826. [DOI] [PMC free article] [PubMed]
  15. Zhu, Q.-Y., Wei, Y.-J. & Wang, F.-W. (2007). Acta Cryst. E63, m1431–m1432.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808015730/sj2508sup1.cif

e-64-0m859-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808015730/sj2508Isup2.hkl

e-64-0m859-Isup2.hkl (195.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES