Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1292. doi: 10.1107/S1600536808017832

(2S,3R)-2-[(4-Ethyl-2,3-dioxopiperazin-1-yl)carbonyl­amino]-3-hydroxy­butyric acid monohydrate

Chun-xiang Ji a, Yong-tao Cui a, Dong-ling Yang b, Cheng Guo a,*
PMCID: PMC2961655  PMID: 21202922

Abstract

In the title compound, C11H17N3O6·H2O, an important building block of the medicine cefbuperazone sodium, the piperazine ring adopts a screw-boat conformation. Inter­molecular O—H⋯O and intra­molecular N—H⋯O hydrogen bonds are observed. The water mol­ecule participates as both donor and acceptor in this framework.

Related literature

For related literature, see: Anger et al. (2001); Özcan et al. (2003); Rondu et al. (1997); Saikawa et al. (1981).graphic file with name e-64-o1292-scheme1.jpg

Experimental

Crystal data

  • C11H17N3O6·H2O

  • M r = 305.29

  • Orthorhombic, Inline graphic

  • a = 9.4640 (19) Å

  • b = 11.389 (2) Å

  • c = 13.611 (3) Å

  • V = 1467.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.955, T max = 0.977

  • 1519 measured reflections

  • 1519 independent reflections

  • 1287 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: <1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.105

  • S = 1.04

  • 1519 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017832/bh2173sup1.cif

e-64-o1292-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017832/bh2173Isup2.hkl

e-64-o1292-Isup2.hkl (74.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O2 0.86 1.99 2.647 (3) 132
O7—H7A⋯O2 0.85 (2) 1.98 (2) 2.817 (4) 169 (5)
O4—H4⋯O7i 0.75 (5) 1.85 (5) 2.593 (4) 170 (5)
O6—H6⋯O1ii 0.83 (4) 1.95 (4) 2.772 (3) 167 (4)
O7—H7B⋯O6iii 0.815 (19) 2.07 (3) 2.803 (4) 149 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

Some derivatives of piperazine are important chemical materials (Saikawa et al., 1981) with pharmaceutical properties (Rondu et al., 1997) for example against migraine, and are calcium channel antagonist (Anger et al., 2001). As part of our studies in this area, we report here the crystal structure of the title compound, (I).

The refined molecular structure of (I) is shown in Fig. 1. The title compound includes a piperzaine and a threonine moieties, and the asymmetric unit is completed by one lattice water molecule. The piperazine ring adopts a screw-boat conformation with atoms C4 and C6 displaced by 0.104 (8) and 0.596 (2) Å, respectively, from the mean plane through atoms N1, C3, N2 and C5. The dihedral angle between N1/C3/N2/C5 and N2/C7/N3/C8 planes is 4.1°.

The threonine molecular group has two chiral atoms, C8 and C10, and adopts a configuration in agreement with previous reports (e.g. Özcan et al., 2003). The separation O6···O1 suggests an interaction between the ketone and the carboxyl group (Table 1). The water molecule is linked to the main molecule via O—H···O hydrogen bonds. These hydrogen bonds are effective in the stabilization of the crystal structure.

Experimental

To a suspension of 2.0 g of L-threonine [(2S,3R)-2-amino-3-hydroxybutanoic acid] in methylene chloride (50 ml), 6.6 ml of trimethylchlorosilane were added, after which 7.1 ml of triethylamine were added dropwise at 273 K. The mixture was heated to 293 K for 2 h, and then a mixture of 4-ethyl-2,3-dioxo-1-piperazinecarbonyl chloride and triethylamine was added to the reaction mixture. After stirring for 1 h, the solvent was removed under reduced pressure. To the residue, 30 ml of water was added, and the pH was adjusted to 8 with NaHCO3, after which the solution was washed with 50 ml of ethyl acetate. Acetonitrile (50 ml) was added to the solution. The pH of the mixture was adjusted to 1 with HCl. The mixture was then saturated with NaCl, and the acetonitrile layer was thereafter separated. The aqueous layer was extracted with acetonitrile (3 × 50 ml), the combined acetonitrile layers were washed with saturated NaCl, and then distilled in vacuo to remove the solvent. The residue was recrystallized from ethanol to obtain 3.2 g of (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution. 1H NMR (DMSO): δ 3.78–4.30 (m, 4H), 3.28–3.75 (m, 4H), 1.13 (d, 3H), 1.11 (t, 3H).

Refinement

Hydroxyl H atoms were located in a difference map and refined freely. Water H atoms were found in a difference map and refined with a restrained geometry, O—H = 0.84 (2) Å. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96-0.98 Å, N—H = 0.86 Å and Uiso(H) = 1.2 or 1.5 Ueq of the carrier atom. Friedel pairs were merged and the absolute configuration was assigned from starting materials.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I), showing displacement ellipsoids at the 30% probability level. Dashed lines indicate O—H···O and N—H···O hydrogen bonds.

Fig. 2.

Fig. 2.

A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C11H17N3O6·H2O F000 = 648
Mr = 305.29 Dx = 1.382 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 25 reflections
a = 9.4640 (19) Å θ = 10–13º
b = 11.389 (2) Å µ = 0.12 mm1
c = 13.611 (3) Å T = 293 (2) K
V = 1467.1 (5) Å3 Block, colourless
Z = 4 0.40 × 0.30 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 25.1º
Monochromator: graphite θmin = 2.3º
T = 293(2) K h = 0→11
ω/2θ scans k = 0→13
Absorption correction: ψ scan(North et al., 1968) l = 0→16
Tmin = 0.955, Tmax = 0.977 3 standard reflections
1519 measured reflections every 200 reflections
1519 independent reflections intensity decay: <1%
1287 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105   w = 1/[σ2(Fo2) + (0.0652P)2 + 0.1558P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
1519 reflections Δρmax = 0.16 e Å3
205 parameters Δρmin = −0.16 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.037 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2982 (5) 0.8688 (4) 0.3149 (3) 0.0802 (14)
H1A 0.2231 0.9061 0.2793 0.120*
H1B 0.3779 0.9207 0.3183 0.120*
H1C 0.2666 0.8505 0.3802 0.120*
C2 0.3399 (4) 0.7585 (3) 0.2637 (3) 0.0517 (9)
H2A 0.2588 0.7066 0.2601 0.062*
H2B 0.3683 0.7771 0.1970 0.062*
C3 0.5900 (3) 0.7122 (3) 0.2851 (2) 0.0401 (7)
C4 0.7064 (3) 0.6501 (3) 0.3450 (2) 0.0385 (7)
C5 0.5156 (3) 0.5303 (3) 0.4161 (3) 0.0549 (10)
H5A 0.4893 0.4738 0.3659 0.066*
H5B 0.4997 0.4945 0.4798 0.066*
C6 0.4272 (3) 0.6364 (3) 0.4065 (3) 0.0544 (9)
H6B 0.3282 0.6145 0.4091 0.065*
H6C 0.4461 0.6891 0.4609 0.065*
C7 0.7632 (3) 0.4841 (3) 0.4570 (2) 0.0403 (7)
C8 1.0033 (3) 0.4380 (3) 0.5054 (2) 0.0373 (7)
H8A 0.9525 0.4006 0.5598 0.045*
C9 1.1128 (3) 0.5210 (3) 0.5489 (2) 0.0390 (7)
C10 1.0768 (3) 0.3423 (3) 0.4465 (2) 0.0425 (7)
H10A 1.1384 0.2984 0.4913 0.051*
C11 0.9774 (4) 0.2570 (3) 0.3990 (3) 0.0570 (9)
H11A 1.0306 0.1992 0.3633 0.085*
H11B 0.9161 0.2982 0.3547 0.085*
H11C 0.9219 0.2188 0.4487 0.085*
N1 0.4564 (2) 0.6970 (2) 0.31326 (19) 0.0416 (7)
N2 0.6683 (3) 0.5610 (2) 0.4054 (2) 0.0397 (6)
N3 0.9022 (2) 0.5055 (2) 0.44847 (19) 0.0383 (6)
H3A 0.9314 0.5594 0.4091 0.046*
O1 0.6257 (2) 0.7700 (3) 0.21398 (19) 0.0635 (8)
O2 0.8292 (2) 0.6821 (2) 0.33274 (19) 0.0534 (7)
O3 0.7145 (3) 0.4047 (2) 0.5047 (2) 0.0648 (8)
O4 1.1991 (3) 0.4638 (2) 0.6080 (2) 0.0654 (8)
H4 1.254 (6) 0.501 (4) 0.632 (3) 0.072 (15)*
O5 1.1208 (2) 0.6236 (2) 0.53094 (18) 0.0506 (6)
O6 1.1642 (3) 0.4009 (2) 0.3763 (2) 0.0600 (7)
H6 1.217 (5) 0.354 (4) 0.347 (3) 0.064 (12)*
O7 0.9118 (3) 0.9195 (3) 0.3221 (2) 0.0663 (8)
H7A 0.894 (5) 0.847 (2) 0.332 (3) 0.080*
H7B 0.909 (5) 0.937 (4) 0.2641 (17) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.071 (3) 0.088 (3) 0.081 (3) 0.038 (3) −0.034 (3) −0.023 (3)
C2 0.0347 (16) 0.063 (2) 0.057 (2) 0.0056 (17) −0.0130 (16) −0.0023 (18)
C3 0.0329 (15) 0.0434 (17) 0.0441 (17) 0.0010 (14) 0.0026 (14) 0.0032 (15)
C4 0.0277 (15) 0.0402 (16) 0.0476 (17) −0.0004 (13) 0.0058 (14) 0.0067 (15)
C5 0.0280 (15) 0.056 (2) 0.081 (3) −0.0076 (15) 0.0075 (17) 0.017 (2)
C6 0.0271 (15) 0.067 (2) 0.069 (2) −0.0013 (16) 0.0102 (17) 0.016 (2)
C7 0.0325 (15) 0.0342 (15) 0.0541 (18) −0.0024 (13) 0.0063 (15) 0.0054 (16)
C8 0.0310 (14) 0.0399 (15) 0.0410 (15) −0.0004 (14) −0.0004 (13) 0.0091 (15)
C9 0.0337 (15) 0.0446 (17) 0.0389 (16) 0.0053 (14) 0.0036 (14) −0.0016 (14)
C10 0.0366 (15) 0.0394 (16) 0.0515 (17) 0.0076 (15) −0.0094 (16) −0.0010 (15)
C11 0.051 (2) 0.0486 (18) 0.071 (2) 0.0071 (17) −0.016 (2) −0.0059 (19)
N1 0.0261 (12) 0.0516 (16) 0.0471 (15) 0.0005 (11) 0.0009 (12) 0.0043 (13)
N2 0.0228 (11) 0.0387 (13) 0.0577 (15) −0.0007 (11) 0.0055 (12) 0.0078 (13)
N3 0.0283 (12) 0.0399 (14) 0.0468 (14) 0.0006 (11) 0.0037 (12) 0.0092 (12)
O1 0.0382 (13) 0.0902 (19) 0.0622 (14) 0.0059 (13) 0.0057 (12) 0.0350 (15)
O2 0.0280 (11) 0.0555 (14) 0.0765 (16) 0.0003 (11) 0.0077 (12) 0.0252 (13)
O3 0.0400 (13) 0.0541 (15) 0.100 (2) −0.0055 (12) 0.0030 (14) 0.0349 (15)
O4 0.0657 (18) 0.0583 (16) 0.0722 (18) −0.0039 (15) −0.0344 (16) 0.0042 (14)
O5 0.0444 (13) 0.0402 (12) 0.0672 (15) −0.0013 (11) 0.0009 (12) −0.0009 (12)
O6 0.0441 (13) 0.0687 (17) 0.0672 (16) 0.0033 (14) 0.0184 (13) −0.0123 (14)
O7 0.0633 (16) 0.0645 (16) 0.0710 (16) −0.0032 (15) 0.0206 (16) −0.0012 (16)

Geometric parameters (Å, °)

C1—C2 1.491 (5) C7—N3 1.343 (4)
C1—H1A 0.9600 C7—N2 1.438 (4)
C1—H1B 0.9600 C8—N3 1.451 (4)
C1—H1C 0.9600 C8—C10 1.521 (4)
C2—N1 1.470 (4) C8—C9 1.522 (4)
C2—H2A 0.9700 C8—H8A 0.9800
C2—H2B 0.9700 C9—O5 1.196 (4)
C3—O1 1.218 (4) C9—O4 1.319 (4)
C3—N1 1.333 (4) C10—O6 1.430 (4)
C3—C4 1.542 (4) C10—C11 1.499 (5)
C4—O2 1.229 (3) C10—H10A 0.9800
C4—N2 1.354 (4) C11—H11A 0.9600
C5—C6 1.476 (5) C11—H11B 0.9600
C5—N2 1.495 (4) C11—H11C 0.9600
C5—H5A 0.9700 N3—H3A 0.8600
C5—H5B 0.9700 O4—H4 0.75 (5)
C6—N1 1.470 (4) O6—H6 0.83 (4)
C6—H6B 0.9700 O7—H7A 0.85 (2)
C6—H6C 0.9700 O7—H7B 0.815 (19)
C7—O3 1.205 (4)
C2—C1—H1A 109.5 N3—C8—C10 113.6 (2)
C2—C1—H1B 109.5 N3—C8—C9 109.1 (2)
H1A—C1—H1B 109.5 C10—C8—C9 109.8 (2)
C2—C1—H1C 109.5 N3—C8—H8A 108.1
H1A—C1—H1C 109.5 C10—C8—H8A 108.1
H1B—C1—H1C 109.5 C9—C8—H8A 108.1
N1—C2—C1 112.7 (3) O5—C9—O4 124.6 (3)
N1—C2—H2A 109.1 O5—C9—C8 124.8 (3)
C1—C2—H2A 109.1 O4—C9—C8 110.6 (3)
N1—C2—H2B 109.1 O6—C10—C11 112.2 (3)
C1—C2—H2B 109.1 O6—C10—C8 106.4 (3)
H2A—C2—H2B 107.8 C11—C10—C8 113.9 (3)
O1—C3—N1 124.2 (3) O6—C10—H10A 108.1
O1—C3—C4 118.0 (3) C11—C10—H10A 108.1
N1—C3—C4 117.8 (3) C8—C10—H10A 108.1
O2—C4—N2 123.8 (3) C10—C11—H11A 109.5
O2—C4—C3 117.8 (3) C10—C11—H11B 109.5
N2—C4—C3 118.3 (2) H11A—C11—H11B 109.5
C6—C5—N2 110.3 (3) C10—C11—H11C 109.5
C6—C5—H5A 109.6 H11A—C11—H11C 109.5
N2—C5—H5A 109.6 H11B—C11—H11C 109.5
C6—C5—H5B 109.6 C3—N1—C2 121.2 (3)
N2—C5—H5B 109.6 C3—N1—C6 119.2 (3)
H5A—C5—H5B 108.1 C2—N1—C6 118.6 (2)
N1—C6—C5 110.7 (3) C4—N2—C7 125.9 (2)
N1—C6—H6B 109.5 C4—N2—C5 119.5 (3)
C5—C6—H6B 109.5 C7—N2—C5 114.4 (2)
N1—C6—H6C 109.5 C7—N3—C8 120.2 (3)
C5—C6—H6C 109.5 C7—N3—H3A 119.9
H6B—C6—H6C 108.1 C8—N3—H3A 119.9
O3—C7—N3 123.9 (3) C9—O4—H4 115 (4)
O3—C7—N2 118.8 (3) C10—O6—H6 111 (3)
N3—C7—N2 117.3 (3) H7A—O7—H7B 113 (5)
O1—C3—C4—O2 16.1 (5) C1—C2—N1—C6 72.6 (4)
N1—C3—C4—O2 −165.3 (3) C5—C6—N1—C3 −44.8 (4)
O1—C3—C4—N2 −161.7 (3) C5—C6—N1—C2 146.7 (3)
N1—C3—C4—N2 16.9 (4) O2—C4—N2—C7 −6.0 (5)
N2—C5—C6—N1 55.3 (4) C3—C4—N2—C7 171.7 (3)
N3—C8—C9—O5 −6.4 (4) O2—C4—N2—C5 179.1 (3)
C10—C8—C9—O5 118.6 (3) C3—C4—N2—C5 −3.2 (4)
N3—C8—C9—O4 174.5 (3) O3—C7—N2—C4 −176.4 (3)
C10—C8—C9—O4 −60.4 (3) N3—C7—N2—C4 3.4 (5)
N3—C8—C10—O6 67.5 (3) O3—C7—N2—C5 −1.3 (5)
C9—C8—C10—O6 −54.9 (3) N3—C7—N2—C5 178.5 (3)
N3—C8—C10—C11 −56.5 (4) C6—C5—N2—C4 −32.7 (5)
C9—C8—C10—C11 −179.0 (3) C6—C5—N2—C7 151.8 (3)
O1—C3—N1—C2 −5.0 (5) O3—C7—N3—C8 −5.7 (5)
C4—C3—N1—C2 176.5 (3) N2—C7—N3—C8 174.5 (2)
O1—C3—N1—C6 −173.2 (3) C10—C8—N3—C7 101.8 (3)
C4—C3—N1—C6 8.3 (4) C9—C8—N3—C7 −135.4 (3)
C1—C2—N1—C3 −95.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O2 0.86 1.99 2.647 (3) 132
O7—H7A···O2 0.85 (2) 1.98 (2) 2.817 (4) 169 (5)
O4—H4···O7i 0.75 (5) 1.85 (5) 2.593 (4) 170 (5)
O6—H6···O1ii 0.83 (4) 1.95 (4) 2.772 (3) 167 (4)
O7—H7B···O6iii 0.815 (19) 2.07 (3) 2.803 (4) 149 (4)

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2173).

References

  1. Anger, T., Madge, D. J., Mulla, M. & Riddall, D. (2001). J. Med. Chem.44, 115–137. [DOI] [PubMed]
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Özcan, Y., İde, S., Şakiyan, İ. & Logoglu, E. (2003). J. Mol. Struct.658, 207–213.
  6. Rondu, F., Le Bihan, G., Wang, X., Lamouri, A., Touboul, E., Dive, G., Bellahsene, T., Pfeiffer, B., Renard, P., Guardiola-Lemaitre, B. et al. (1997). J. Med. Chem.40, 3793–3803. [DOI] [PubMed]
  7. Saikawa, I., Takano, S., Imaizumi, H., Takakura, I., Ochiai, H., Yasuda, T., Taki, H., Tai, M. & Kodama, Y. (1981). US Patent No. 4 263 292.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017832/bh2173sup1.cif

e-64-o1292-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017832/bh2173Isup2.hkl

e-64-o1292-Isup2.hkl (74.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES