Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1260. doi: 10.1107/S1600536808017182

Redetermination of pyridine-4-carbonitrile–chloranilic acid (1/1) at 180 K

Kazuma Gotoh a, Hirokazu Nagoshi a, Hiroyuki Ishida a,*
PMCID: PMC2961658  PMID: 21202894

Abstract

In the crystal structure of the title compound, C6H4N2·C6H2Cl2O4, two chloranilic acid (systematic name: 2,5-dichloro-3,6-dihydr­oxy-1,4-benzoquinone) mol­ecules are connected by O—H⋯O hydrogen bonds to form a dimeric unit. The pyridine-4-carbonitrile mol­ecules are linked on both sides of the dimer via N⋯H⋯O hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid. The H atom in the N⋯H⋯O hydrogen bond is disordered over two positions with approximately equal occupancies. The pyridine ring makes a dihedral angle of 61.54 (14)° with the chloranilic acid plane. The 2:2 units are further linked by inter­molecular C—H⋯O and C—H⋯Cl hydrogen bonds. This determination presents a siginficantly higher precision crystal structure than the previously published structure [Tomura & Yamasshita (2008). X-ray Struct. Anal. Online, 24, x31–x32].

Related literature

For related structures, see, for example: Gotoh, Asaji & Ishida (2007); Gotoh, Ishikawa & Ishida (2007); Tomura & Yamasshita (2008).graphic file with name e-64-o1260-scheme1.jpg

Experimental

Crystal data

  • C6H4N2·C6H2Cl2O4

  • M r = 313.10

  • Monoclinic, Inline graphic

  • a = 14.9327 (8) Å

  • b = 4.9301 (3) Å

  • c = 17.0355 (10) Å

  • β = 93.0474 (18)°

  • V = 1252.37 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 180 (2) K

  • 0.18 × 0.18 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPIDII diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1995) T min = 0.900, T max = 0.958

  • 11539 measured reflections

  • 3567 independent reflections

  • 2165 reflections with I > 2σ(I)

  • R int = 0.076

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.176

  • S = 1.07

  • 3567 reflections

  • 192 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: CrystalStructure and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017182/lh2639sup1.cif

e-64-o1260-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017182/lh2639Isup2.hkl

e-64-o1260-Isup2.hkl (174.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 1.20 (10) 1.47 (10) 2.610 (3) 158 (7)
O4—H4⋯O1 0.78 (4) 2.21 (4) 2.661 (3) 118 (4)
O4—H4⋯O1i 0.78 (4) 1.99 (4) 2.656 (3) 144 (4)
N1—H1⋯O2 0.83 (12) 1.80 (13) 2.610 (3) 163 (10)
N1—H1⋯O3 0.83 (12) 2.45 (10) 2.957 (3) 120 (9)
C7—H7⋯Cl1ii 0.95 2.82 3.722 (3) 159
C8—H8⋯O4iii 0.95 2.46 3.324 (4) 151
C10—H10⋯Cl2iv 0.95 2.81 3.710 (3) 158
C11—H11⋯O3v 0.95 2.39 3.245 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 19550018) from the Japanese Society for the Promotion of Science.

supplementary crystallographic information

Comment

The title compound, (I), was prepared in order to extend our study on D—H···A hydrogen bonding (D = N, O, or C; A = N, O or Cl) in amine–chloranilic acid systems (Gotoh, Asaji & Ishida, 2007; Gotoh, Ishikawa & Ishida, 2007). This determination presents a siginficantly higher precision crystal structure than the previously published structure (Tomura & Yamasshita, 2008).

The asymmetric unit in (I) contains one pyridine-4-carbonitrile molecule and one chloranilic acid molecule (Fig. 1). Two chloranilic acid molecules related by an inversion centre are held together by O—H···O hydrogen bonds (Table 1) to form a dimer. The pyridine-4-carbonitrile molecules are linked on both sides of the dimer via N···H···O hydrogen bonds to give a centrosymmetric 2:2 complex of pyridine-4-carbonitrile and chloranilic acid (Fig. 2). The N···O distance is relatively short [2.610 (3) Å] and the H atom in the N···H···O hydrogen bond is disordered over two positions with site occupancies of 0.54 (17) and 0.46 (17). In the 2:2 unit, the pyridine and chloranilic acid planes are twised with a dihedral angle of 61.54 (14)°. The 2:2 units are further linked by C—H···O and C—H···Cl hydrogen bonds (Table 1 and Fig. 3).

Experimental

Single crystals were obtained by slow evaporation from a methanol solution (30 ml) of chloranilic acid (500 mg) and pyridine-4-carbonitrile (250 mg).

Refinement

C-bound H atoms were positioned geometrically (C—H = 0.95 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C). The H atom in the O—H···O hydrogen bond was found in a difference Fourier map and refined isotropically (refined distances given in Table 1). The H atom in the N···H···O hydrogen bond was found to be disordered over two positions in a difference Fourier map. The positional parameters of the disordered H atom were refined, with Uiso(H) = 1.2Ueq(N, O) and the site occupancy factors were refined to 0.54 (17) and 0.46 (17).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with the atom-labeling. Displacement ellipsoids of non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The structure of the 2:2 unit of (I). The dashed lines indicate O—H···O hydrogen bonds (symmetry codes as Table 1).

Fig. 3.

Fig. 3.

A packing diagram of (I), viewed down the b axis. The dotted lines indicate C—H···Cl hydrogen bonds.

Crystal data

C6H4N2·C6H2Cl2O4 F000 = 632.00
Mr = 313.10 Dx = 1.660 Mg m3
Monoclinic, P21/n Mo Kα radiation λ = 0.71075 Å
Hall symbol: -P 2yn Cell parameters from 7762 reflections
a = 14.9327 (8) Å θ = 3.0–30.0º
b = 4.9301 (3) Å µ = 0.53 mm1
c = 17.0355 (10) Å T = 180 (2) K
β = 93.0474 (18)º Needle, brown
V = 1252.37 (13) Å3 0.18 × 0.18 × 0.08 mm
Z = 4

Data collection

Rigaku R-AXIS RAPIDII diffractometer 2165 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.076
ω scans θmax = 30.0º
Absorption correction: numerical(ABSCOR; Higashi, 1995) h = −20→20
Tmin = 0.900, Tmax = 0.958 k = −6→6
11539 measured reflections l = −23→22
3567 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.177   w = 1/[σ2(Fo2) + (0.0805P)2] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
3567 reflections Δρmax = 0.43 e Å3
192 parameters Δρmin = −0.73 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl1 0.72657 (5) 1.21818 (15) 0.67956 (4) 0.0293 (2)
Cl2 0.72206 (5) 0.30951 (15) 0.41510 (4) 0.0317 (2)
O1 0.57647 (13) 1.0461 (5) 0.56722 (13) 0.0341 (5)
O2 0.87571 (13) 0.8329 (4) 0.64426 (13) 0.0303 (5)
H2 0.914 (7) 0.62 (2) 0.647 (5) 0.036* 0.54 (17)
O3 0.87474 (13) 0.4764 (5) 0.52519 (13) 0.0343 (5)
O4 0.57459 (14) 0.6729 (5) 0.45427 (14) 0.0316 (5)
H4 0.540 (3) 0.781 (8) 0.466 (2) 0.048 (13)*
N1 0.97525 (16) 0.4095 (6) 0.67823 (15) 0.0303 (6)
H1 0.944 (9) 0.53 (3) 0.658 (6) 0.036* 0.46 (17)
N2 1.18662 (18) −0.3815 (6) 0.78927 (17) 0.0370 (6)
C1 0.64869 (18) 0.9233 (6) 0.56045 (16) 0.0256 (6)
C2 0.72824 (18) 0.9664 (6) 0.60781 (16) 0.0249 (6)
C3 0.80477 (18) 0.8142 (6) 0.60089 (17) 0.0248 (6)
C4 0.80495 (18) 0.5996 (6) 0.53513 (17) 0.0254 (6)
C5 0.72339 (19) 0.5549 (6) 0.48720 (16) 0.0266 (6)
C6 0.65029 (18) 0.7065 (6) 0.49777 (17) 0.0244 (6)
C7 0.9672 (2) 0.3253 (7) 0.7517 (2) 0.0354 (7)
H7 0.9239 0.4070 0.7831 0.043*
C8 1.0209 (2) 0.1210 (7) 0.78260 (18) 0.0333 (7)
H8 1.0152 0.0599 0.8350 0.040*
C9 1.08368 (18) 0.0063 (6) 0.73566 (17) 0.0275 (6)
C10 1.0914 (2) 0.0969 (7) 0.65940 (19) 0.0372 (8)
H10 1.1348 0.0208 0.6271 0.045*
C11 1.0349 (2) 0.2994 (7) 0.6313 (2) 0.0355 (7)
H11 1.0382 0.3613 0.5787 0.043*
C12 1.1423 (2) −0.2083 (6) 0.76598 (19) 0.0310 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0338 (4) 0.0282 (4) 0.0255 (4) −0.0001 (3) −0.0033 (3) −0.0035 (3)
Cl2 0.0369 (4) 0.0322 (4) 0.0257 (4) 0.0089 (3) −0.0017 (3) −0.0053 (3)
O1 0.0287 (10) 0.0399 (12) 0.0328 (12) 0.0106 (10) −0.0062 (9) −0.0093 (10)
O2 0.0283 (10) 0.0288 (11) 0.0327 (12) 0.0020 (9) −0.0080 (9) 0.0018 (9)
O3 0.0287 (10) 0.0407 (13) 0.0333 (12) 0.0107 (9) −0.0004 (9) 0.0012 (10)
O4 0.0242 (10) 0.0364 (12) 0.0335 (12) 0.0074 (9) −0.0062 (9) −0.0105 (10)
N1 0.0276 (13) 0.0333 (14) 0.0292 (14) 0.0032 (11) −0.0055 (10) 0.0018 (12)
N2 0.0375 (14) 0.0337 (14) 0.0398 (16) 0.0036 (12) 0.0012 (12) 0.0039 (13)
C1 0.0263 (13) 0.0280 (14) 0.0223 (14) 0.0038 (12) 0.0001 (11) 0.0014 (12)
C2 0.0272 (13) 0.0264 (14) 0.0208 (13) 0.0010 (12) −0.0011 (10) −0.0012 (11)
C3 0.0212 (13) 0.0289 (15) 0.0239 (14) −0.0010 (11) −0.0030 (10) 0.0045 (12)
C4 0.0285 (14) 0.0241 (13) 0.0237 (14) 0.0044 (11) 0.0004 (11) 0.0062 (12)
C5 0.0305 (14) 0.0282 (14) 0.0209 (14) 0.0022 (12) −0.0004 (11) −0.0027 (12)
C6 0.0254 (14) 0.0239 (14) 0.0233 (14) 0.0020 (11) −0.0039 (11) −0.0003 (11)
C7 0.0345 (16) 0.0420 (19) 0.0294 (16) 0.0084 (14) −0.0018 (13) −0.0026 (14)
C8 0.0388 (16) 0.0361 (16) 0.0245 (15) 0.0075 (14) −0.0023 (12) 0.0051 (14)
C9 0.0264 (13) 0.0268 (14) 0.0286 (15) −0.0002 (12) −0.0060 (11) 0.0001 (12)
C10 0.0332 (16) 0.0460 (19) 0.0323 (17) 0.0089 (15) 0.0016 (13) 0.0056 (15)
C11 0.0319 (16) 0.0425 (19) 0.0321 (17) 0.0059 (14) 0.0006 (13) 0.0106 (14)
C12 0.0327 (15) 0.0289 (15) 0.0309 (17) −0.0018 (13) −0.0030 (13) 0.0011 (13)

Geometric parameters (Å, °)

Cl1—C2 1.743 (3) C2—C3 1.377 (4)
Cl2—C5 1.723 (3) C3—C4 1.541 (4)
O1—C1 1.247 (3) C4—C5 1.447 (4)
O2—C3 1.262 (3) C5—C6 1.343 (4)
O2—H2 1.20 (14) C7—C8 1.375 (4)
O3—C4 1.226 (3) C7—H7 0.9500
O4—C6 1.329 (3) C8—C9 1.384 (4)
O4—H4 0.77 (4) C8—H8 0.9500
N1—C7 1.330 (4) C9—C10 1.384 (4)
N1—C11 1.343 (4) C9—C12 1.451 (4)
N1—H1 0.83 (17) C10—C11 1.376 (4)
N2—C12 1.138 (4) C10—H10 0.9500
C1—C2 1.416 (4) C11—H11 0.9500
C1—C6 1.512 (4)
C3—O2—H2 110 (4) C4—C5—Cl2 119.1 (2)
C6—O4—H4 110 (3) O4—C6—C5 122.0 (3)
C7—N1—C11 122.0 (3) O4—C6—C1 115.9 (2)
C7—N1—H2 119 (3) C5—C6—C1 122.1 (2)
C11—N1—H2 119 (3) N1—C7—C8 120.6 (3)
C7—N1—H1 123 (6) N1—C7—H7 119.7
C11—N1—H1 115 (6) C8—C7—H7 119.7
O1—C1—C2 125.3 (3) C7—C8—C9 118.5 (3)
O1—C1—C6 117.0 (2) C7—C8—H8 120.7
C2—C1—C6 117.7 (2) C9—C8—H8 120.7
C3—C2—C1 123.0 (3) C10—C9—C8 120.2 (3)
C3—C2—Cl1 119.4 (2) C10—C9—C12 119.4 (3)
C1—C2—Cl1 117.6 (2) C8—C9—C12 120.4 (3)
O2—C3—C2 125.8 (3) C11—C10—C9 118.7 (3)
O2—C3—C4 116.2 (2) C11—C10—H10 120.6
C2—C3—C4 118.0 (2) C9—C10—H10 120.6
O3—C4—C5 122.9 (3) N1—C11—C10 120.0 (3)
O3—C4—C3 118.4 (2) N1—C11—H11 120.0
C5—C4—C3 118.7 (2) C10—C11—H11 120.0
C6—C5—C4 120.4 (3) N2—C12—C9 178.2 (3)
C6—C5—Cl2 120.5 (2)
O1—C1—C2—C3 176.1 (3) C4—C5—C6—O4 179.3 (3)
C6—C1—C2—C3 −2.4 (4) Cl2—C5—C6—O4 0.6 (4)
O1—C1—C2—Cl1 −2.0 (4) C4—C5—C6—C1 −1.5 (5)
C6—C1—C2—Cl1 179.5 (2) Cl2—C5—C6—C1 179.9 (2)
C1—C2—C3—O2 −175.7 (3) O1—C1—C6—O4 1.7 (4)
Cl1—C2—C3—O2 2.4 (4) C2—C1—C6—O4 −179.7 (3)
C1—C2—C3—C4 3.8 (4) O1—C1—C6—C5 −177.5 (3)
Cl1—C2—C3—C4 −178.1 (2) C2—C1—C6—C5 1.1 (4)
O2—C3—C4—O3 −5.3 (4) C11—N1—C7—C8 0.5 (5)
C2—C3—C4—O3 175.1 (3) N1—C7—C8—C9 0.3 (5)
O2—C3—C4—C5 175.5 (3) C7—C8—C9—C10 −0.1 (5)
C2—C3—C4—C5 −4.1 (4) C7—C8—C9—C12 179.5 (3)
O3—C4—C5—C6 −176.2 (3) C8—C9—C10—C11 −0.8 (5)
C3—C4—C5—C6 3.0 (4) C12—C9—C10—C11 179.6 (3)
O3—C4—C5—Cl2 2.5 (4) C7—N1—C11—C10 −1.4 (5)
C3—C4—C5—Cl2 −178.4 (2) C9—C10—C11—N1 1.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···N1 1.20 (10) 1.47 (10) 2.610 (3) 158 (7)
O4—H4···O1 0.78 (4) 2.21 (4) 2.661 (3) 118 (4)
O4—H4···O1i 0.78 (4) 1.99 (4) 2.656 (3) 144 (4)
N1—H1···O2 0.83 (12) 1.80 (13) 2.610 (3) 163 (10)
N1—H1···O3 0.83 (12) 2.45 (10) 2.957 (3) 120 (9)
C7—H7···Cl1ii 0.95 2.82 3.722 (3) 159
C8—H8···O4iii 0.95 2.46 3.324 (4) 151
C10—H10···Cl2iv 0.95 2.81 3.710 (3) 158
C11—H11···O3v 0.95 2.39 3.245 (4) 150

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+3/2, y−1/2, −z+3/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) −x+2, −y, −z+1; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2639).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Gotoh, K., Asaji, T. & Ishida, H. (2007). Acta Cryst. C63, o17–o20. [DOI] [PubMed]
  3. Gotoh, K., Ishikawa, R. & Ishida, H. (2007). Acta Cryst. E63, o4433.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC. (2004). PROCESS-AUTO and CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  8. Tomura, M. & Yamasshita, Y. (2008). X-ray Struct. Anal. Online, 24, x31–x32

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017182/lh2639sup1.cif

e-64-o1260-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017182/lh2639Isup2.hkl

e-64-o1260-Isup2.hkl (174.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES