Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1300. doi: 10.1107/S1600536808018102

2-Chloro-N-(3-chloro­phen­yl)benzamide

B Thimme Gowda a,*, Sabine Foro b, B P Sowmya a, Hartmut Fuess b
PMCID: PMC2961659  PMID: 21202929

Abstract

In the structure of the the title compound, C13H9Cl2NO, the N—H and C=O groups are mutually trans. Furthermore, the conformation of the C=O group is syn to the ortho-chloro group in the benzoyl ring, while the N—H bond is anti to the meta-chloro group in the aniline ring. The amide group forms dihedral angles of 89.11 (19) and 22.58 (37)°, respectively, with the benzoyl and aniline rings, while the benzoyl and aniline rings form a dihedral angle of 69.74 (14)°. The mol­ecules are linked into infinite chains through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2003); Gowda, Foro et al. (2008); Gowda, Tokarčík et al. (2008).graphic file with name e-64-o1300-scheme1.jpg

Experimental

Crystal data

  • C13H9Cl2NO

  • M r = 266.11

  • Orthorhombic, Inline graphic

  • a = 11.430 (1) Å

  • b = 12.209 (2) Å

  • c = 8.878 (1) Å

  • V = 1238.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 299 (2) K

  • 0.48 × 0.18 × 0.04 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.794, T max = 0.980

  • 4926 measured reflections

  • 1746 independent reflections

  • 1248 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.139

  • S = 1.15

  • 1746 reflections

  • 154 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.42 e Å−3

  • Absolute structure: Flack (1983), 387 Friedel pairs

  • Flack parameter: 0.02 (13)

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018102/tk2274sup1.cif

e-64-o1300-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018102/tk2274Isup2.hkl

e-64-o1300-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.06 2.880 (5) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(3-chlorophenyl)-benzamide (I) has been determined to explore the effect of substituents on the structures of benzanilides (Gowda et al., 2003; Gowda, Foro et al., 2008; Gowda, Tokarčík et al., 2008). The N—H and C=O bonds are trans to each other, Fig. 1, similar to that observed in N-(3-chlorophenyl)-benzamide (N3CPBA) (Gowda, Tokarčík et al., 2008), 2-chloro-N-(phenyl)-benzamide (NP2CBA) (Gowda et al., 2003), 2-methyl-N-(3-chlorophenyl)-benzamide (N3CP2MBA) (Gowda, Foro et al., 2008), and other benzanilides. Further, the conformation of the C=O group is syn to the ortho-chloro group in the benzoyl ring, while the N—H bond is anti to the meta-chloro group in the aniline ring, similar to that observed in N3CP2MBA (Gowda, Foro et al., 2008). The amide group forms dihedral angles of 89.11 (19)° and 22.58 (37)° with the benzoyl and aniline rings, respectively, while the benzoyl and aniline rings form a dihedral angle of 69.74 (14)°. These compare with the corresponding values of 55.8 (7)°, 18.6 (12)° and 37.5 (1)°, respectively, in N3CP2MBA. In the crystal structure of (I), the molecules are linked by N—H···O hydrogen bonds (Table 1) forming chains running along the c axis, Fig. 2.

Experimental

Compound (I) was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was confirmed by melting point, and infrared and NMR spectra. Single crystals used for the X-ray diffraction analysis were obtained from an ethanolic solution of (I).

Refinement

The H atoms were positioned with idealized geometries using a riding model with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C, N)

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C13H9Cl2NO F000 = 544
Mr = 266.11 Dx = 1.427 Mg m3
Orthorhombic, Pca21 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 1634 reflections
a = 11.430 (1) Å θ = 2.4–27.7º
b = 12.209 (2) Å µ = 0.51 mm1
c = 8.878 (1) Å T = 299 (2) K
V = 1238.9 (3) Å3 Plate, colourless
Z = 4 0.48 × 0.18 × 0.04 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 1746 independent reflections
Radiation source: fine-focus sealed tube 1248 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.022
T = 299(2) K θmax = 26.4º
Rotation method data acquisition using ω and φ scans θmin = 2.4º
Absorption correction: multi-scan(CrysAlis RED; Oxford Diffraction, 2007) h = −14→7
Tmin = 0.794, Tmax = 0.980 k = −9→15
4926 measured reflections l = −11→4

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038   w = 1/[σ2(Fo2) + (0.0797P)2 + 0.0826P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139 (Δ/σ)max = 0.002
S = 1.15 Δρmax = 0.39 e Å3
1746 reflections Δρmin = −0.42 e Å3
154 parameters Extinction correction: none
1 restraint Absolute structure: Flack (1983), 387 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (13)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.75422 (12) 0.62626 (9) −0.0970 (2) 0.0776 (5)
Cl2 0.49999 (15) 0.21361 (13) 0.3455 (3) 0.1038 (7)
O1 0.6539 (3) 0.2242 (3) −0.0041 (3) 0.0597 (8)
N1 0.7788 (3) 0.2603 (3) 0.1873 (4) 0.0499 (9)
H1N 0.8049 0.2334 0.2702 0.060*
C1 0.8275 (3) 0.3614 (3) 0.1443 (5) 0.0437 (9)
C2 0.7719 (3) 0.4339 (3) 0.0469 (5) 0.0433 (9)
H2 0.7012 0.4159 0.0014 0.052*
C3 0.8252 (4) 0.5339 (3) 0.0200 (5) 0.0481 (10)
C4 0.9300 (4) 0.5626 (4) 0.0814 (5) 0.0559 (12)
H4 0.9638 0.6301 0.0602 0.067*
C5 0.9845 (4) 0.4894 (4) 0.1753 (7) 0.0680 (14)
H5 1.0566 0.5072 0.2173 0.082*
C6 0.9340 (4) 0.3903 (4) 0.2082 (6) 0.0577 (11)
H6 0.9713 0.3422 0.2738 0.069*
C7 0.6971 (4) 0.2001 (3) 0.1166 (5) 0.0444 (9)
C8 0.6619 (3) 0.0962 (3) 0.1951 (5) 0.0458 (9)
C9 0.5699 (4) 0.0925 (4) 0.2959 (6) 0.0578 (12)
C10 0.5336 (4) −0.0053 (4) 0.3608 (7) 0.0766 (16)
H10 0.4709 −0.0067 0.4275 0.092*
C11 0.5915 (6) −0.0989 (4) 0.3252 (9) 0.0805 (17)
H11 0.5689 −0.1646 0.3696 0.097*
C12 0.6820 (6) −0.0983 (4) 0.2255 (9) 0.090 (2)
H12 0.7198 −0.1633 0.2007 0.108*
C13 0.7178 (5) −0.0001 (4) 0.1608 (8) 0.0771 (15)
H13 0.7803 0.0003 0.0937 0.093*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0812 (7) 0.0536 (6) 0.0981 (10) −0.0008 (6) −0.0181 (7) 0.0268 (7)
Cl2 0.1036 (10) 0.0798 (9) 0.1282 (16) 0.0244 (8) 0.0548 (10) 0.0169 (10)
O1 0.0753 (19) 0.0604 (18) 0.0433 (16) −0.0176 (15) −0.0119 (16) 0.0148 (15)
N1 0.059 (2) 0.0434 (17) 0.047 (2) −0.0080 (15) −0.0111 (17) 0.0101 (17)
C1 0.043 (2) 0.046 (2) 0.042 (2) −0.0078 (16) 0.0003 (19) 0.007 (2)
C2 0.044 (2) 0.044 (2) 0.042 (2) −0.0025 (17) −0.0062 (19) 0.0029 (18)
C3 0.054 (2) 0.040 (2) 0.051 (3) 0.0010 (18) 0.004 (2) 0.0030 (19)
C4 0.053 (3) 0.060 (3) 0.055 (3) −0.017 (2) −0.001 (2) 0.011 (2)
C5 0.051 (2) 0.078 (3) 0.075 (4) −0.023 (2) −0.008 (3) 0.018 (3)
C6 0.050 (2) 0.068 (3) 0.056 (3) −0.005 (2) −0.011 (2) 0.018 (2)
C7 0.047 (2) 0.046 (2) 0.040 (2) −0.0003 (18) 0.0013 (19) 0.0077 (19)
C8 0.047 (2) 0.045 (2) 0.046 (2) −0.0003 (16) −0.007 (2) 0.0032 (18)
C9 0.050 (2) 0.059 (3) 0.064 (3) −0.002 (2) 0.001 (2) 0.014 (2)
C10 0.063 (3) 0.078 (3) 0.089 (4) −0.022 (3) 0.008 (3) 0.029 (4)
C11 0.093 (4) 0.053 (3) 0.096 (4) −0.020 (3) −0.016 (4) 0.027 (3)
C12 0.113 (5) 0.042 (3) 0.116 (5) 0.013 (3) 0.003 (5) 0.011 (3)
C13 0.085 (3) 0.056 (3) 0.090 (4) 0.009 (2) 0.013 (4) 0.002 (3)

Geometric parameters (Å, °)

Cl1—C3 1.735 (4) C5—H5 0.9300
Cl2—C9 1.737 (5) C6—H6 0.9300
O1—C7 1.217 (5) C7—C8 1.502 (6)
N1—C7 1.344 (5) C8—C13 1.372 (6)
N1—C1 1.406 (5) C8—C9 1.383 (6)
N1—H1N 0.8600 C9—C10 1.389 (7)
C1—C6 1.389 (6) C10—C11 1.358 (8)
C1—C2 1.391 (6) C10—H10 0.9300
C2—C3 1.385 (5) C11—C12 1.362 (9)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.362 (6) C12—C13 1.390 (8)
C4—C5 1.372 (7) C12—H12 0.9300
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.372 (6)
C7—N1—C1 128.9 (3) O1—C7—N1 124.1 (4)
C7—N1—H1N 115.5 O1—C7—C8 120.3 (4)
C1—N1—H1N 115.5 N1—C7—C8 115.6 (3)
C6—C1—C2 119.5 (3) C13—C8—C9 118.0 (4)
C6—C1—N1 117.3 (3) C13—C8—C7 119.8 (4)
C2—C1—N1 123.1 (3) C9—C8—C7 122.1 (4)
C3—C2—C1 117.9 (4) C8—C9—C10 121.6 (5)
C3—C2—H2 121.1 C8—C9—Cl2 119.1 (3)
C1—C2—H2 121.1 C10—C9—Cl2 119.3 (4)
C4—C3—C2 123.0 (4) C11—C10—C9 118.8 (5)
C4—C3—Cl1 118.9 (3) C11—C10—H10 120.6
C2—C3—Cl1 118.1 (3) C9—C10—H10 120.6
C3—C4—C5 118.4 (4) C10—C11—C12 121.1 (5)
C3—C4—H4 120.8 C10—C11—H11 119.4
C5—C4—H4 120.8 C12—C11—H11 119.4
C4—C5—C6 120.8 (4) C11—C12—C13 119.8 (5)
C4—C5—H5 119.6 C11—C12—H12 120.1
C6—C5—H5 119.6 C13—C12—H12 120.1
C5—C6—C1 120.4 (4) C8—C13—C12 120.7 (5)
C5—C6—H6 119.8 C8—C13—H13 119.7
C1—C6—H6 119.8 C12—C13—H13 119.7
C7—N1—C1—C6 −160.3 (4) N1—C7—C8—C13 −92.5 (5)
C7—N1—C1—C2 22.4 (7) O1—C7—C8—C9 −90.1 (5)
C6—C1—C2—C3 −1.1 (6) N1—C7—C8—C9 91.1 (5)
N1—C1—C2—C3 176.2 (4) C13—C8—C9—C10 −0.4 (7)
C1—C2—C3—C4 1.6 (6) C7—C8—C9—C10 176.0 (5)
C1—C2—C3—Cl1 −178.2 (3) C13—C8—C9—Cl2 178.2 (4)
C2—C3—C4—C5 −0.7 (7) C7—C8—C9—Cl2 −5.3 (6)
Cl1—C3—C4—C5 179.2 (4) C8—C9—C10—C11 0.9 (8)
C3—C4—C5—C6 −0.8 (8) Cl2—C9—C10—C11 −177.8 (5)
C4—C5—C6—C1 1.3 (8) C9—C10—C11—C12 −1.3 (9)
C2—C1—C6—C5 −0.3 (7) C10—C11—C12—C13 1.2 (10)
N1—C1—C6—C5 −177.7 (5) C9—C8—C13—C12 0.3 (9)
C1—N1—C7—O1 2.6 (7) C7—C8—C13—C12 −176.2 (5)
C1—N1—C7—C8 −178.6 (4) C11—C12—C13—C8 −0.8 (10)
O1—C7—C8—C13 86.2 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 2.06 2.880 (5) 159

Symmetry codes: (i) −x+3/2, y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2274).

References

  1. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  2. Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o861. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  4. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o462. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808018102/tk2274sup1.cif

e-64-o1300-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018102/tk2274Isup2.hkl

e-64-o1300-Isup2.hkl (86KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES