Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m868. doi: 10.1107/S1600536808013172

Poly[{μ2-1,2-bis­[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]ethane}di-μ2-cyanido-dicopper(I)]

Ya-Wen Zhang a, Hua-Ze Dong b, Lin Cheng a,*
PMCID: PMC2961664  PMID: 21202742

Abstract

The asymmetric unit of the title complex, [Cu2(CN)2(C20H16N6S2)]n, contains one CuI cation, one cyanide ligand and half of a centrosymmetric 1,2-bis­[4-(3-pyrid­yl)pyrimidin-2-ylsulfan­yl]ethane (bppe) ligand. The CuI atom displays a trigonal coordination geometry, being surrounded by one C atom from one cyanide anion and two N atoms from one cyanide and one bppe ligand. In the complex, each cyanide anion links two CuI atoms in a bis-monodentate mode into a zigzag [–Cu—CN–]n chain. Two parallel chains are linked by bppe ligands into a ladder chain.

Related literature

For related literature, see: Awaleh et al. (2005); Bu et al. (2003); Chen et al. (2003); Su et al. (2000); Xie et al. (2005).graphic file with name e-64-0m868-scheme1.jpg

Experimental

Crystal data

  • [Cu2(CN)2(C20H16N6S2)]

  • M r = 291.81

  • Monoclinic, Inline graphic

  • a = 16.025 (4) Å

  • b = 16.296 (7) Å

  • c = 9.3103 (17) Å

  • β = 105.660 (19)°

  • V = 2341.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 153 (2) K

  • 0.50 × 0.20 × 0.10 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.431, T max = 0.823

  • 6130 measured reflections

  • 2290 independent reflections

  • 1925 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.083

  • S = 1.09

  • 2290 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013172/hg2393sup1.cif

e-64-0m868-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013172/hg2393Isup2.hkl

e-64-0m868-Isup2.hkl (112.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

There has been current significant interest in the rational design and synthesis of metal-organic coordination architectures by using flexible bridging units due that the flexibility and conformational freedoms of such ligands offer the possibility for the construction of unprecedented frameworks (Su et al., 2000). Recently, flexible thioethers have been well established ligands in coordination and metallosupramolecular chemistry because of their rich structural information (Awaleh et al., 2005, Bu et al., 2003, Chen et al., 2003, Xie et al., 2005). Herein, we report the crystal structure of the title compound, [Cu2(CN)2(C20H16N6S2)]n, based on a pyridyl dithioether ligand–1,2-bis(4-(pyridinyl-4-)pyrimidin-2-ylthio)ethane. The asymmetric unit of the title complex, contains one CuI cation, one cyano and half a bppe (bppe = 1,2-bis(4-(pyridinyl-4-)pyrimidin -2-ylthio)ethane) ligand. The CuI atom displays a triangular geometry, being surrounded by one carbon atom (Cu1—C11a 1.873 (3) Å) from one cyano anion and two nitrogen atoms from one cyano (Cu1—N4 1.916 (2) Å) and one bppe ligand (Cu1—N3 1.873 (3) Å). In the complex, each cyano aion links two CuI atoms in a bis-monodentate mode into a zigzag (CuCN)n chain. The shortest intrachain Cu—Cu distance is 4.894 (2) Å. Two parallel zigzag chains were linked by bppe ligands into a one-dimensional ladder chain, in which the Cu—Cu distance separated by bppe is 11.648 (3) Å. The ladder chain is stabilized by the intraladder C–H···N hydrogen bonds (C9—N1 2.810 (3) Å; C8—N2 3.398 (4) Å). Finally, the ladder chains were constructed into a three-dimensional supramolecular network by the interladder C10–H···N1c (c = -1/2 + x,1/2 - y,1/2 + z) hydrogen bond with the C···N distance 2.891 (4) Å.

Experimental

A mixture of bppe (0.040 g, 0.1 mmol), CuCN (0.018 g, 0.2 mmol), and water (6 ml) were heated in a 15-ml Teflon-lined vessel at 403 K for 3 days, followed by slow cooling (5 K/hr) to room temperature. After filtration and washing with H2O, colorless needle-like crystals were collected and dried in air (0.019 g, yield ca 32% based on bppe).

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2.

Figures

Fig. 1.

Fig. 1.

Local coordination environment of the title compound with 30% thermal ellipsoids. All the hydrogen atoms are omitted for clarity. Symmetry codes for 1, a: x, -y, 1/2 + z; b: 1 - x, -y,1 - z.

Fig. 2.

Fig. 2.

The zigzag (CuCN)n chain in the title compound.

Fig. 3.

Fig. 3.

The one-dimensional ladder chain of the title compound.

Crystal data

[Cu2(CN)2(C20H16N6S2)] F000 = 1176
Mr = 291.81 Dx = 1.656 Mg m3
Monoclinic, C2/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 765 reflections
a = 16.025 (4) Å θ = 2.5–28.0º
b = 16.296 (7) Å µ = 2.02 mm1
c = 9.3103 (17) Å T = 153 (2) K
β = 105.660 (19)º Needle-like, colorless
V = 2341.1 (12) Å3 0.50 × 0.20 × 0.10 mm
Z = 8

Data collection

Bruker APEX CCD diffractometer 2290 independent reflections
Radiation source: fine-focus sealed tube 1925 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
T = 153(2) K θmax = 26.0º
φ and ω scans θmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 2002) h = −19→9
Tmin = 0.431, Tmax = 0.823 k = −20→19
6130 measured reflections l = −11→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.083   w = 1/[σ2(Fo2) + (0.0456P)2 + 0.02P] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
2290 reflections Δρmax = 0.41 e Å3
154 parameters Δρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.200534 (18) 0.046307 (17) 0.73287 (3) 0.04397 (13)
S1 0.58681 (4) 0.09504 (5) 0.45165 (9) 0.0681 (2)
N1 0.46673 (11) 0.17752 (12) 0.5455 (2) 0.0424 (4)
N2 0.55869 (14) 0.25077 (17) 0.4267 (2) 0.0624 (6)
N3 0.25417 (11) 0.16006 (11) 0.71533 (19) 0.0379 (4)
N4 0.18704 (14) 0.00114 (12) 0.5379 (2) 0.0506 (5)
C1 0.52978 (14) 0.18272 (17) 0.4778 (3) 0.0496 (6)
C2 0.52069 (18) 0.3195 (2) 0.4501 (3) 0.0661 (8)
H2 0.5387 0.3684 0.4167 0.079*
C3 0.45586 (16) 0.32250 (16) 0.5214 (3) 0.0539 (6)
H3 0.4308 0.3719 0.5373 0.065*
C4 0.42959 (13) 0.24839 (14) 0.5686 (2) 0.0386 (5)
C5 0.35930 (13) 0.24308 (13) 0.6430 (2) 0.0355 (5)
C6 0.33133 (15) 0.31071 (14) 0.7073 (3) 0.0452 (5)
H6 0.3570 0.3617 0.7045 0.054*
C7 0.26579 (16) 0.30235 (15) 0.7749 (3) 0.0514 (6)
H7 0.2461 0.3475 0.8174 0.062*
C8 0.22945 (14) 0.22636 (15) 0.7791 (3) 0.0442 (5)
H8 0.1862 0.2206 0.8279 0.053*
C9 0.31811 (13) 0.16915 (13) 0.6502 (2) 0.0367 (5)
H9 0.3361 0.1233 0.6071 0.044*
C10 0.54252 (17) 0.01639 (19) 0.5480 (3) 0.0632 (7)
H10A 0.5837 −0.0283 0.5753 0.076*
H10B 0.5337 0.0392 0.6390 0.076*
C11 0.18755 (15) −0.01827 (14) 0.4207 (3) 0.0432 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0547 (2) 0.0449 (2) 0.04047 (19) −0.00041 (12) 0.02691 (14) 0.00271 (11)
S1 0.0465 (4) 0.0949 (6) 0.0744 (5) 0.0002 (4) 0.0360 (3) −0.0228 (4)
N1 0.0357 (10) 0.0536 (12) 0.0422 (10) −0.0013 (8) 0.0179 (8) −0.0022 (9)
N2 0.0467 (13) 0.0923 (19) 0.0555 (14) −0.0152 (12) 0.0262 (11) 0.0025 (12)
N3 0.0387 (10) 0.0410 (10) 0.0402 (10) −0.0013 (8) 0.0212 (8) −0.0016 (8)
N4 0.0740 (14) 0.0401 (11) 0.0468 (11) 0.0020 (10) 0.0320 (10) 0.0010 (9)
C1 0.0354 (13) 0.0772 (18) 0.0396 (12) −0.0048 (11) 0.0163 (10) −0.0068 (12)
C2 0.0510 (16) 0.082 (2) 0.0691 (18) −0.0173 (15) 0.0228 (14) 0.0213 (16)
C3 0.0458 (14) 0.0561 (15) 0.0623 (16) −0.0030 (11) 0.0190 (12) 0.0152 (12)
C4 0.0291 (11) 0.0495 (13) 0.0379 (11) −0.0011 (9) 0.0101 (9) 0.0048 (9)
C5 0.0325 (11) 0.0379 (12) 0.0370 (11) 0.0017 (8) 0.0113 (9) 0.0054 (8)
C6 0.0444 (13) 0.0359 (12) 0.0571 (14) −0.0006 (9) 0.0167 (11) 0.0006 (10)
C7 0.0514 (15) 0.0442 (14) 0.0643 (16) 0.0045 (11) 0.0253 (12) −0.0131 (12)
C8 0.0409 (13) 0.0515 (14) 0.0474 (13) 0.0023 (10) 0.0241 (10) −0.0046 (11)
C9 0.0390 (12) 0.0361 (11) 0.0401 (11) 0.0028 (9) 0.0193 (9) 0.0003 (9)
C10 0.0495 (15) 0.0784 (19) 0.0614 (16) 0.0148 (14) 0.0144 (12) −0.0181 (15)
C11 0.0614 (15) 0.0351 (11) 0.0401 (12) 0.0082 (10) 0.0259 (11) 0.0038 (10)

Geometric parameters (Å, °)

Cu1—C11i 1.873 (2) C3—H3 0.9300
Cu1—N4 1.916 (2) C4—C5 1.476 (3)
Cu1—N3 2.0683 (19) C5—C9 1.384 (3)
S1—C1 1.748 (3) C5—C6 1.385 (3)
S1—C10 1.815 (3) C6—C7 1.369 (4)
N1—C1 1.330 (3) C6—H6 0.9300
N1—C4 1.343 (3) C7—C8 1.374 (3)
N2—C2 1.321 (4) C7—H7 0.9300
N2—C1 1.338 (3) C8—H8 0.9300
N3—C9 1.332 (3) C9—H9 0.9300
N3—C8 1.343 (3) C10—C10ii 1.511 (5)
N4—C11 1.138 (3) C10—H10A 0.9700
C2—C3 1.376 (4) C10—H10B 0.9700
C2—H2 0.9300 C11—Cu1iii 1.873 (2)
C3—C4 1.389 (3)
C11i—Cu1—N4 141.12 (9) C9—C5—C6 117.2 (2)
C11i—Cu1—N3 116.47 (8) C9—C5—C4 120.5 (2)
N4—Cu1—N3 102.27 (8) C6—C5—C4 122.2 (2)
C1—S1—C10 102.68 (12) C7—C6—C5 119.8 (2)
C1—N1—C4 116.6 (2) C7—C6—H6 120.1
C2—N2—C1 115.1 (2) C5—C6—H6 120.1
C9—N3—C8 117.83 (19) C6—C7—C8 119.1 (2)
C9—N3—Cu1 121.50 (14) C6—C7—H7 120.4
C8—N3—Cu1 120.50 (15) C8—C7—H7 120.4
C11—N4—Cu1 170.7 (2) N3—C8—C7 122.3 (2)
N1—C1—N2 127.0 (2) N3—C8—H8 118.8
N1—C1—S1 120.4 (2) C7—C8—H8 118.8
N2—C1—S1 112.58 (18) N3—C9—C5 123.65 (19)
N2—C2—C3 123.5 (3) N3—C9—H9 118.2
N2—C2—H2 118.3 C5—C9—H9 118.2
C3—C2—H2 118.3 C10ii—C10—S1 111.6 (3)
C2—C3—C4 117.0 (3) C10ii—C10—H10A 109.3
C2—C3—H3 121.5 S1—C10—H10A 109.3
C4—C3—H3 121.5 C10ii—C10—H10B 109.3
N1—C4—C3 120.8 (2) S1—C10—H10B 109.3
N1—C4—C5 116.88 (19) H10A—C10—H10B 108.0
C3—C4—C5 122.3 (2) N4—C11—Cu1iii 173.9 (2)

Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2393).

References

  1. Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem.44, 7833–7845. [DOI] [PubMed]
  2. Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bu, X.-H., Xie, Y.-B., Li, J.-R. & Zhang, R.-H. (2003). Inorg. Chem.42, 7422–7430. [DOI] [PubMed]
  4. Chen, C.-L., Su, C.-Y., Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Kang, B.-S. & zur Loye, H.-C. (2003). Inorg. Chem.42, 3738–3750. [DOI] [PubMed]
  5. Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Su, C.-Y., Liao, S., Zhu, H.-L., Kang, B.-S., Chen, X.-M. & Liu, H.-Q. (2000). Dalton Trans. pp. 1985–1993.
  8. Xie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des.5, 1743–1749.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013172/hg2393sup1.cif

e-64-0m868-sup1.cif (14.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013172/hg2393Isup2.hkl

e-64-0m868-Isup2.hkl (112.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES