Abstract
The asymmetric unit of the title complex, [Cu2(CN)2(C20H16N6S2)]n, contains one CuI cation, one cyanide ligand and half of a centrosymmetric 1,2-bis[4-(3-pyridyl)pyrimidin-2-ylsulfanyl]ethane (bppe) ligand. The CuI atom displays a trigonal coordination geometry, being surrounded by one C atom from one cyanide anion and two N atoms from one cyanide and one bppe ligand. In the complex, each cyanide anion links two CuI atoms in a bis-monodentate mode into a zigzag [–Cu—CN–]n chain. Two parallel chains are linked by bppe ligands into a ladder chain.
Related literature
For related literature, see: Awaleh et al. (2005 ▶); Bu et al. (2003 ▶); Chen et al. (2003 ▶); Su et al. (2000 ▶); Xie et al. (2005 ▶).
Experimental
Crystal data
[Cu2(CN)2(C20H16N6S2)]
M r = 291.81
Monoclinic,
a = 16.025 (4) Å
b = 16.296 (7) Å
c = 9.3103 (17) Å
β = 105.660 (19)°
V = 2341.1 (12) Å3
Z = 8
Mo Kα radiation
μ = 2.02 mm−1
T = 153 (2) K
0.50 × 0.20 × 0.10 mm
Data collection
Bruker APEX CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▶) T min = 0.431, T max = 0.823
6130 measured reflections
2290 independent reflections
1925 reflections with I > 2σ(I)
R int = 0.036
Refinement
R[F 2 > 2σ(F 2)] = 0.032
wR(F 2) = 0.083
S = 1.09
2290 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.41 e Å−3
Δρmin = −0.32 e Å−3
Data collection: SMART (Bruker, 2000 ▶); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000 ▶); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013172/hg2393sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013172/hg2393Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Program for Young Excellent Talents in Southeast University for financial support.
supplementary crystallographic information
Comment
There has been current significant interest in the rational design and synthesis of metal-organic coordination architectures by using flexible bridging units due that the flexibility and conformational freedoms of such ligands offer the possibility for the construction of unprecedented frameworks (Su et al., 2000). Recently, flexible thioethers have been well established ligands in coordination and metallosupramolecular chemistry because of their rich structural information (Awaleh et al., 2005, Bu et al., 2003, Chen et al., 2003, Xie et al., 2005). Herein, we report the crystal structure of the title compound, [Cu2(CN)2(C20H16N6S2)]n, based on a pyridyl dithioether ligand–1,2-bis(4-(pyridinyl-4-)pyrimidin-2-ylthio)ethane. The asymmetric unit of the title complex, contains one CuI cation, one cyano and half a bppe (bppe = 1,2-bis(4-(pyridinyl-4-)pyrimidin -2-ylthio)ethane) ligand. The CuI atom displays a triangular geometry, being surrounded by one carbon atom (Cu1—C11a 1.873 (3) Å) from one cyano anion and two nitrogen atoms from one cyano (Cu1—N4 1.916 (2) Å) and one bppe ligand (Cu1—N3 1.873 (3) Å). In the complex, each cyano aion links two CuI atoms in a bis-monodentate mode into a zigzag (CuCN)n chain. The shortest intrachain Cu—Cu distance is 4.894 (2) Å. Two parallel zigzag chains were linked by bppe ligands into a one-dimensional ladder chain, in which the Cu—Cu distance separated by bppe is 11.648 (3) Å. The ladder chain is stabilized by the intraladder C–H···N hydrogen bonds (C9—N1 2.810 (3) Å; C8—N2 3.398 (4) Å). Finally, the ladder chains were constructed into a three-dimensional supramolecular network by the interladder C10–H···N1c (c = -1/2 + x,1/2 - y,1/2 + z) hydrogen bond with the C···N distance 2.891 (4) Å.
Experimental
A mixture of bppe (0.040 g, 0.1 mmol), CuCN (0.018 g, 0.2 mmol), and water (6 ml) were heated in a 15-ml Teflon-lined vessel at 403 K for 3 days, followed by slow cooling (5 K/hr) to room temperature. After filtration and washing with H2O, colorless needle-like crystals were collected and dried in air (0.019 g, yield ca 32% based on bppe).
Refinement
H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2.
Figures
Fig. 1.
Local coordination environment of the title compound with 30% thermal ellipsoids. All the hydrogen atoms are omitted for clarity. Symmetry codes for 1, a: x, -y, 1/2 + z; b: 1 - x, -y,1 - z.
Fig. 2.
The zigzag (CuCN)n chain in the title compound.
Fig. 3.
The one-dimensional ladder chain of the title compound.
Crystal data
| [Cu2(CN)2(C20H16N6S2)] | F000 = 1176 |
| Mr = 291.81 | Dx = 1.656 Mg m−3 |
| Monoclinic, C2/c | Mo Kα radiation λ = 0.71073 Å |
| Hall symbol: -C 2yc | Cell parameters from 765 reflections |
| a = 16.025 (4) Å | θ = 2.5–28.0º |
| b = 16.296 (7) Å | µ = 2.02 mm−1 |
| c = 9.3103 (17) Å | T = 153 (2) K |
| β = 105.660 (19)º | Needle-like, colorless |
| V = 2341.1 (12) Å3 | 0.50 × 0.20 × 0.10 mm |
| Z = 8 |
Data collection
| Bruker APEX CCD diffractometer | 2290 independent reflections |
| Radiation source: fine-focus sealed tube | 1925 reflections with I > 2σ(I) |
| Monochromator: graphite | Rint = 0.036 |
| T = 153(2) K | θmax = 26.0º |
| φ and ω scans | θmin = 2.5º |
| Absorption correction: multi-scan(SADABS; Sheldrick, 2002) | h = −19→9 |
| Tmin = 0.431, Tmax = 0.823 | k = −20→19 |
| 6130 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.032 | H-atom parameters constrained |
| wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0456P)2 + 0.02P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.09 | (Δ/σ)max < 0.001 |
| 2290 reflections | Δρmax = 0.41 e Å−3 |
| 154 parameters | Δρmin = −0.32 e Å−3 |
| Primary atom site location: structure-invariant direct methods | Extinction correction: none |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.200534 (18) | 0.046307 (17) | 0.73287 (3) | 0.04397 (13) | |
| S1 | 0.58681 (4) | 0.09504 (5) | 0.45165 (9) | 0.0681 (2) | |
| N1 | 0.46673 (11) | 0.17752 (12) | 0.5455 (2) | 0.0424 (4) | |
| N2 | 0.55869 (14) | 0.25077 (17) | 0.4267 (2) | 0.0624 (6) | |
| N3 | 0.25417 (11) | 0.16006 (11) | 0.71533 (19) | 0.0379 (4) | |
| N4 | 0.18704 (14) | 0.00114 (12) | 0.5379 (2) | 0.0506 (5) | |
| C1 | 0.52978 (14) | 0.18272 (17) | 0.4778 (3) | 0.0496 (6) | |
| C2 | 0.52069 (18) | 0.3195 (2) | 0.4501 (3) | 0.0661 (8) | |
| H2 | 0.5387 | 0.3684 | 0.4167 | 0.079* | |
| C3 | 0.45586 (16) | 0.32250 (16) | 0.5214 (3) | 0.0539 (6) | |
| H3 | 0.4308 | 0.3719 | 0.5373 | 0.065* | |
| C4 | 0.42959 (13) | 0.24839 (14) | 0.5686 (2) | 0.0386 (5) | |
| C5 | 0.35930 (13) | 0.24308 (13) | 0.6430 (2) | 0.0355 (5) | |
| C6 | 0.33133 (15) | 0.31071 (14) | 0.7073 (3) | 0.0452 (5) | |
| H6 | 0.3570 | 0.3617 | 0.7045 | 0.054* | |
| C7 | 0.26579 (16) | 0.30235 (15) | 0.7749 (3) | 0.0514 (6) | |
| H7 | 0.2461 | 0.3475 | 0.8174 | 0.062* | |
| C8 | 0.22945 (14) | 0.22636 (15) | 0.7791 (3) | 0.0442 (5) | |
| H8 | 0.1862 | 0.2206 | 0.8279 | 0.053* | |
| C9 | 0.31811 (13) | 0.16915 (13) | 0.6502 (2) | 0.0367 (5) | |
| H9 | 0.3361 | 0.1233 | 0.6071 | 0.044* | |
| C10 | 0.54252 (17) | 0.01639 (19) | 0.5480 (3) | 0.0632 (7) | |
| H10A | 0.5837 | −0.0283 | 0.5753 | 0.076* | |
| H10B | 0.5337 | 0.0392 | 0.6390 | 0.076* | |
| C11 | 0.18755 (15) | −0.01827 (14) | 0.4207 (3) | 0.0432 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0547 (2) | 0.0449 (2) | 0.04047 (19) | −0.00041 (12) | 0.02691 (14) | 0.00271 (11) |
| S1 | 0.0465 (4) | 0.0949 (6) | 0.0744 (5) | 0.0002 (4) | 0.0360 (3) | −0.0228 (4) |
| N1 | 0.0357 (10) | 0.0536 (12) | 0.0422 (10) | −0.0013 (8) | 0.0179 (8) | −0.0022 (9) |
| N2 | 0.0467 (13) | 0.0923 (19) | 0.0555 (14) | −0.0152 (12) | 0.0262 (11) | 0.0025 (12) |
| N3 | 0.0387 (10) | 0.0410 (10) | 0.0402 (10) | −0.0013 (8) | 0.0212 (8) | −0.0016 (8) |
| N4 | 0.0740 (14) | 0.0401 (11) | 0.0468 (11) | 0.0020 (10) | 0.0320 (10) | 0.0010 (9) |
| C1 | 0.0354 (13) | 0.0772 (18) | 0.0396 (12) | −0.0048 (11) | 0.0163 (10) | −0.0068 (12) |
| C2 | 0.0510 (16) | 0.082 (2) | 0.0691 (18) | −0.0173 (15) | 0.0228 (14) | 0.0213 (16) |
| C3 | 0.0458 (14) | 0.0561 (15) | 0.0623 (16) | −0.0030 (11) | 0.0190 (12) | 0.0152 (12) |
| C4 | 0.0291 (11) | 0.0495 (13) | 0.0379 (11) | −0.0011 (9) | 0.0101 (9) | 0.0048 (9) |
| C5 | 0.0325 (11) | 0.0379 (12) | 0.0370 (11) | 0.0017 (8) | 0.0113 (9) | 0.0054 (8) |
| C6 | 0.0444 (13) | 0.0359 (12) | 0.0571 (14) | −0.0006 (9) | 0.0167 (11) | 0.0006 (10) |
| C7 | 0.0514 (15) | 0.0442 (14) | 0.0643 (16) | 0.0045 (11) | 0.0253 (12) | −0.0131 (12) |
| C8 | 0.0409 (13) | 0.0515 (14) | 0.0474 (13) | 0.0023 (10) | 0.0241 (10) | −0.0046 (11) |
| C9 | 0.0390 (12) | 0.0361 (11) | 0.0401 (11) | 0.0028 (9) | 0.0193 (9) | 0.0003 (9) |
| C10 | 0.0495 (15) | 0.0784 (19) | 0.0614 (16) | 0.0148 (14) | 0.0144 (12) | −0.0181 (15) |
| C11 | 0.0614 (15) | 0.0351 (11) | 0.0401 (12) | 0.0082 (10) | 0.0259 (11) | 0.0038 (10) |
Geometric parameters (Å, °)
| Cu1—C11i | 1.873 (2) | C3—H3 | 0.9300 |
| Cu1—N4 | 1.916 (2) | C4—C5 | 1.476 (3) |
| Cu1—N3 | 2.0683 (19) | C5—C9 | 1.384 (3) |
| S1—C1 | 1.748 (3) | C5—C6 | 1.385 (3) |
| S1—C10 | 1.815 (3) | C6—C7 | 1.369 (4) |
| N1—C1 | 1.330 (3) | C6—H6 | 0.9300 |
| N1—C4 | 1.343 (3) | C7—C8 | 1.374 (3) |
| N2—C2 | 1.321 (4) | C7—H7 | 0.9300 |
| N2—C1 | 1.338 (3) | C8—H8 | 0.9300 |
| N3—C9 | 1.332 (3) | C9—H9 | 0.9300 |
| N3—C8 | 1.343 (3) | C10—C10ii | 1.511 (5) |
| N4—C11 | 1.138 (3) | C10—H10A | 0.9700 |
| C2—C3 | 1.376 (4) | C10—H10B | 0.9700 |
| C2—H2 | 0.9300 | C11—Cu1iii | 1.873 (2) |
| C3—C4 | 1.389 (3) | ||
| C11i—Cu1—N4 | 141.12 (9) | C9—C5—C6 | 117.2 (2) |
| C11i—Cu1—N3 | 116.47 (8) | C9—C5—C4 | 120.5 (2) |
| N4—Cu1—N3 | 102.27 (8) | C6—C5—C4 | 122.2 (2) |
| C1—S1—C10 | 102.68 (12) | C7—C6—C5 | 119.8 (2) |
| C1—N1—C4 | 116.6 (2) | C7—C6—H6 | 120.1 |
| C2—N2—C1 | 115.1 (2) | C5—C6—H6 | 120.1 |
| C9—N3—C8 | 117.83 (19) | C6—C7—C8 | 119.1 (2) |
| C9—N3—Cu1 | 121.50 (14) | C6—C7—H7 | 120.4 |
| C8—N3—Cu1 | 120.50 (15) | C8—C7—H7 | 120.4 |
| C11—N4—Cu1 | 170.7 (2) | N3—C8—C7 | 122.3 (2) |
| N1—C1—N2 | 127.0 (2) | N3—C8—H8 | 118.8 |
| N1—C1—S1 | 120.4 (2) | C7—C8—H8 | 118.8 |
| N2—C1—S1 | 112.58 (18) | N3—C9—C5 | 123.65 (19) |
| N2—C2—C3 | 123.5 (3) | N3—C9—H9 | 118.2 |
| N2—C2—H2 | 118.3 | C5—C9—H9 | 118.2 |
| C3—C2—H2 | 118.3 | C10ii—C10—S1 | 111.6 (3) |
| C2—C3—C4 | 117.0 (3) | C10ii—C10—H10A | 109.3 |
| C2—C3—H3 | 121.5 | S1—C10—H10A | 109.3 |
| C4—C3—H3 | 121.5 | C10ii—C10—H10B | 109.3 |
| N1—C4—C3 | 120.8 (2) | S1—C10—H10B | 109.3 |
| N1—C4—C5 | 116.88 (19) | H10A—C10—H10B | 108.0 |
| C3—C4—C5 | 122.3 (2) | N4—C11—Cu1iii | 173.9 (2) |
Symmetry codes: (i) x, −y, z+1/2; (ii) −x+1, −y, −z+1; (iii) x, −y, z−1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2393).
References
- Awaleh, M. O., Badia, A. & Brisse, F. (2005). Inorg. Chem.44, 7833–7845. [DOI] [PubMed]
- Bruker (2000). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Bu, X.-H., Xie, Y.-B., Li, J.-R. & Zhang, R.-H. (2003). Inorg. Chem.42, 7422–7430. [DOI] [PubMed]
- Chen, C.-L., Su, C.-Y., Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Kang, B.-S. & zur Loye, H.-C. (2003). Inorg. Chem.42, 3738–3750. [DOI] [PubMed]
- Sheldrick, G. M. (2002). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Su, C.-Y., Liao, S., Zhu, H.-L., Kang, B.-S., Chen, X.-M. & Liu, H.-Q. (2000). Dalton Trans. pp. 1985–1993.
- Xie, Y.-B., Li, J.-R., Zhang, C. & Bu, X.-H. (2005). Cryst. Growth Des.5, 1743–1749.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013172/hg2393sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013172/hg2393Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



