Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):m921. doi: 10.1107/S1600536808013913

The one-dimensional organic inorganic hybrid compound poly[(diethyl­ene­triamine)tetra-μ-iodido-dilead(II)]

E Samet Kallel a, H Boughzala b,*, A Driss c, Y Abid a
PMCID: PMC2961667  PMID: 21202778

Abstract

A new organic–inorganic hybrid, [Pb2I4(C4H13N3)]n, was obtained by the reaction of C4N3H10 and PbI2 at room temperature. The structure is a three-dimensional polymer resulting from the association of PbI6 octa­hedra and a mixed lead organic–inorganic PbI4(C4N3H13) coordination polyhedron. Both Pb atoms, two I atoms and one N atom lie on a mirror plane. N—H⋯I hydrogen bonds further connect the organic unit and some I atoms.

Related literature

For related literature, see: Lode & Krautscheild (2001); Krautscheild et al. (2001); Papavassiliou et al. (1999); Wang et al. (1995); Zhu et al. (2004). graphic file with name e-64-0m921-scheme1.jpg

Experimental

Crystal data

  • [Pb2I4(C4H13N3)]

  • M r = 1025.15

  • Orthorhombic, Inline graphic

  • a = 17.034 (6) Å

  • b = 9.218 (3) Å

  • c = 11.092 (4) Å

  • V = 1741.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 26.38 mm−1

  • T = 293 (2) K

  • 0.2 × 0.05 × 0.05 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.095, T max = 0.268

  • 2906 measured reflections

  • 1998 independent reflections

  • 1202 reflections with I > 2σ(I)

  • R int = 0.045

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.099

  • S = 1.00

  • 1998 reflections

  • 67 parameters

  • H-atom parameters constrained

  • Δρmax = 1.57 e Å−3

  • Δρmin = −1.58 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013913/dn2346sup1.cif

e-64-0m921-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013913/dn2346Isup2.hkl

e-64-0m921-Isup2.hkl (96.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1i 0.90 2.93 3.791 (12) 160
N1—H1B⋯I2ii 0.90 2.88 3.746 (12) 163
N2—H2⋯I2iii 0.91 3.19 3.731 (17) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

The basic structure building block of this compound is made up of lead iodide octahedral [PbI6] and a mixed lead organic-inorganic PbI4(C4N3H13) coordination polyhedron (Fig 1). Both Pb atoms , two I atoms and one N atom lie on a mirror plane. Atom Pb1 is located in the octahedral cavity of the inorganic chains while Pb2 is responsible of the connectivity between organic moiety and inorganic chains. To our knowledge, this is the first report of an organic-inorganic hybrid exhibiting this kind of lead connectivity.

A part of the inorganic back bone is staked as single chains of edge sharing Pb1I6 octahedra, as shown in Fig 2. The halide atoms I3 are responsible for the edge sharing between Pb1I6 neighboring octahedron to join infinite one dimensional chain (parallel to b axis). Within the octahedra the bond lengths around Pb1 range from 3.182 (2) to 3.319 (2) Å which indicate the dominant ionic character of the Pb—I bonds in the inorganic chains. The bond angles I—Pb1—I deviate slightly from ideal octahedral value of 90° and 180°, ranging from 88.39 (4)° to 92.98 (5)° for the adjacent iodides and from 176.76 (3)° to 179.59 (4)° for the opposite ones. This ideal octahedron indicates the unstereochemical activity of lead (II) lone pair electrons (Wang et al. 1995). Note that the regular octahedrons are a characteristic feature often encountered in the low dimensional lead iodide structures (Zhu et al., 2004).

As mentioned above, C4N3H13 is in combination with inorganic moiety by three Pb2—N non covalent interaction and hydrogen bonds. The non centrosymmetric organic molecule is slightly twisted around the C—C bond as reflected by a torsion angle of 25.1 (14)°. Bond distances and angles appear to be within normal range.

It is note worthy that the yellow color observed for the title compound is in good accordance with a low dimensional network of lead octahedral (Lode et al., 2001; Krautscheild et al., 2001; Papavassiliou et al., 1999).

Experimental

An aqueous solution of HI was added to the diethylentriamin to synthesis C4H13N3I3 salts. Under ambient conditions, stoechiometric amounts of C4H13N3I3 and PbI2 with excess HI (to improve PbI2 solubility), were sailed in DMF. The resulting solution was kept at room temperature. Yellow needle-like crystals are obtained five weeks later.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.97 Å (CH2) and N—H = 0.90Å (NH2) or 0.91Å (NH) 0.86 Å with Uiso(H) = 1.2Ueq (C or N).

Figures

Fig. 1.

Fig. 1.

: View of the C4N3H13Pb2I4 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i)x, 1/2 - y, z; (ii) 1 - x, 1/2 + y,1 - z; (iii) 1 - x, –Y, 1 - z; (iv) 1/2 - x, -y, 1/2 + z; (v) x - 1/2,1/2 - y, 3/2 - z; (vi) 1/2 - x, 1/2 + y, 1/2 + z

Fig. 2.

Fig. 2.

: Packing view of C4N3H13Pb2I4 viewed along [010] direction. H atoms have been omitted for clarity.

Crystal data

[Pb2I4(C4H13N3)] F000 = 1736
Mr = 1025.15 Dx = 3.910 Mg m3
Orthorhombic, Pnma Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 25 reflections
a = 17.034 (6) Å θ = 10.7–13.8º
b = 9.218 (3) Å µ = 26.38 mm1
c = 11.092 (4) Å T = 293 (2) K
V = 1741.6 (10) Å3 Needle, yellow
Z = 4 0.2 × 0.05 × 0.05 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.045
Radiation source: fine-focus sealed tube θmax = 27.0º
Monochromator: graphite θmin = 2.2º
T = 293(2) K h = −1→21
Non–profiled ω/2θ scans k = −11→3
Absorption correction: ψ scan(North et al., 1968) l = −1→14
Tmin = 0.095, Tmax = 0.268 2 standard reflections
2906 measured reflections every 120 min
1998 independent reflections intensity decay: 5%
1202 reflections with I > 2σ(I)

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.099   w = 1/[σ2(Fo2) + (0.0394P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1998 reflections Δρmax = 1.57 e Å3
67 parameters Δρmin = −1.58 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. Number of psi-scan sets used was 4 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al.,1968).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.49490 (3) 0.2500 0.49379 (7) 0.0376 (2)
Pb2 0.23035 (4) 0.2500 0.86880 (7) 0.0361 (2)
I1 0.32678 (7) 0.2500 0.61874 (12) 0.0482 (4)
I2 0.66724 (7) 0.2500 0.36339 (11) 0.0441 (3)
I3 0.43945 (5) −0.00127 (10) 0.31479 (9) 0.0458 (3)
N1 0.2835 (7) −0.0102 (10) 0.8986 (11) 0.049 (3)
H1A 0.2469 −0.0639 0.9365 0.059*
H1B 0.2922 −0.0506 0.8260 0.059*
N2 0.3598 (9) 0.2500 0.9763 (17) 0.055 (5)
H2 0.3467 0.2500 1.0558 0.066*
C2 0.4032 (8) 0.113 (2) 0.9595 (18) 0.079 (6)
H2C 0.4281 0.1143 0.8807 0.094*
H2D 0.4445 0.1075 1.0195 0.094*
C1 0.3559 (10) −0.0133 (16) 0.9684 (18) 0.076 (6)
H1C 0.3426 −0.0282 1.0525 0.091*
H1D 0.3867 −0.0961 0.9425 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.0375 (4) 0.0355 (4) 0.0399 (4) 0.000 0.0008 (3) 0.000
Pb2 0.0285 (3) 0.0402 (4) 0.0397 (4) 0.000 0.0006 (3) 0.000
I1 0.0465 (7) 0.0557 (8) 0.0425 (8) 0.000 0.0098 (7) 0.000
I2 0.0429 (7) 0.0507 (8) 0.0388 (7) 0.000 0.0023 (6) 0.000
I3 0.0484 (5) 0.0472 (6) 0.0419 (5) −0.0063 (4) −0.0028 (4) −0.0008 (5)
N1 0.060 (7) 0.025 (6) 0.062 (9) 0.006 (5) 0.010 (6) 0.001 (6)
N2 0.043 (8) 0.062 (12) 0.059 (12) 0.000 −0.015 (9) 0.000
C2 0.048 (9) 0.084 (14) 0.103 (16) 0.013 (10) −0.007 (10) 0.011 (13)
C1 0.088 (12) 0.043 (10) 0.096 (16) 0.017 (9) −0.023 (12) 0.001 (11)

Geometric parameters (Å, °)

Pb1—I1 3.1816 (17) N1—H1A 0.9000
Pb1—I3 3.1936 (13) N1—H1B 0.9000
Pb1—I2 3.2725 (16) N2—C2 1.476 (18)
Pb1—I3i 3.3190 (13) N2—H2 0.9100
Pb2—N2 2.506 (15) C2—C1 1.42 (2)
Pb2—N1 2.585 (10) C2—H2C 0.9700
Pb2—I2ii 3.1591 (18) C2—H2D 0.9700
Pb2—I1 3.2236 (17) C1—H1C 0.9700
Pb2—I3iii 3.7392 (17) C1—H1D 0.9700
N1—C1 1.457 (19)
I1—Pb1—I3 90.26 (3) Pb1ix—I3—Pb2viii 74.61 (2)
I3—Pb1—I3iv 92.98 (5) Pb1—I1—Pb2 146.46 (5)
I1—Pb1—I2 179.59 (4) Pb2x—I2—Pb1 83.66 (4)
I3—Pb1—I2 89.46 (3) Pb1—I3—Pb1ix 90.21 (4)
I1—Pb1—I3i 91.41 (3) C1—N1—Pb2 112.5 (8)
I3—Pb1—I3i 176.76 (3) C1—N1—H1A 109.1
I3iv—Pb1—I3i 89.79 (4) Pb2—N1—H1A 109.1
I2—Pb1—I3i 88.88 (3) C1—N1—H1B 109.1
I3—Pb1—I3v 89.79 (4) Pb2—N1—H1B 109.1
I3iv—Pb1—I3v 176.76 (3) H1A—N1—H1B 107.8
I3i—Pb1—I3v 87.39 (4) C2—N2—C2iv 117.7 (17)
N2—Pb2—N1 68.4 (3) C2—N2—Pb2 112.4 (9)
N1iv—Pb2—N1 136.3 (5) C2—N2—H2 104.2
N2—Pb2—I2ii 81.5 (4) Pb2—N2—H2 104.2
N1—Pb2—I2ii 89.9 (3) C1—C2—N2 114.1 (12)
N2—Pb2—I1 87.8 (4) C1—C2—H2C 108.7
N1—Pb2—I1 86.1 (3) N2—C2—H2C 108.7
I2ii—Pb2—I1 169.26 (4) C1—C2—H2D 108.7
I3iii—Pb2—N1 73.9 (3) N2—C2—H2D 108.7
I1—Pb2—I3iii 104.85 (3) H2C—C2—H2D 107.6
I3iii—Pb2—N2 139.17 (15) C2—C1—N1 115.4 (13)
I3iii—Pb2—I3vi 75.64 (2) C2—C1—H1C 108.4
I2vii—Pb2—I3iii 83.54 (3) N1—C1—H1C 108.4
I3vi—Pb2—N1 149.3 (3) C2—C1—H1D 108.4
I3vi—Pb2—N1iv 73.8 (3) N1—C1—H1D 108.4
Pb1—I3—Pb2viii 125.02 (3) H1C—C1—H1D 107.5
C1—N1—N2—C2 25.1 (14)

Symmetry codes: (i) −x+1, y+1/2, −z+1; (ii) x−1/2, y, −z+3/2; (iii) −x+1/2, −y, z+1/2; (iv) x, −y+1/2, z; (v) −x+1, −y, −z+1; (vi) −x+1/2, y+1/2, z+1/2; (vii) x−1/2, −y+1/2, −z+3/2; (viii) −x+1/2, −y, z−1/2; (ix) −x+1, y−1/2, −z+1; (x) x+1/2, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···I1xi 0.90 2.93 3.791 (12) 160
N1—H1B···I2v 0.90 2.88 3.746 (12) 163
N2—H2···I2ii 0.91 3.19 3.731 (17) 121

Symmetry codes: (xi) −x+1/2, −y, z+1/2; (v) −x+1, −y, −z+1; (ii) x−1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2346).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Krautscheild, K., Lode, C., Vielsack, F. & Vollmer, H. (2001). J. Chem. Soc. Dalton Trans. pp. 1099–1104..
  5. Lode, C. & Krautscheild, H. (2001). Z. Anorg. Allg. Chem 627 1454–1458.
  6. Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst.25, 73–80.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Papavassiliou, G. C., Mousdis, G. A., Raptopoulou, C. P. & Terzis, A. Z. (1999). Z. Naturforsch. Teil B, 54, 1405–1409.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Wang, S., Mitzi, D. B., Feild, C. A. & Guloy, A. (1995). J. Am. Chem. Soc.117, 5297–5302.
  12. Zhu, X. H., Mercier, N., Allain, M., Frère, P., Blanchard, P., Roncali, J. & Riou, A. (2004). J. Solid State Chem.177, 1067–1071.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013913/dn2346sup1.cif

e-64-0m921-sup1.cif (14.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013913/dn2346Isup2.hkl

e-64-0m921-Isup2.hkl (96.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES