Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 21;64(Pt 7):o1315. doi: 10.1107/S1600536808018369

N,N′-Dimeth­oxy-N,N′-dimethyl­succinamide

Sumei Yao a,*
PMCID: PMC2961671  PMID: 21202941

Abstract

The title compound, C8H16N2O4, is a Weinreb amide that is also an important inter­mediate for the preparation of ketones and aldehydes. The molecule possesses a centre of symmetry.

Related literature

For related literature, see: Nahm & Weinreb (1981).graphic file with name e-64-o1315-scheme1.jpg

Experimental

Crystal data

  • C8H16N2O4

  • M r = 204.23

  • Monoclinic, Inline graphic

  • a = 4.2645 (15) Å

  • b = 11.152 (4) Å

  • c = 11.165 (4) Å

  • β = 98.485 (5)°

  • V = 525.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.20 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.980, T max = 0.987

  • 2116 measured reflections

  • 909 independent reflections

  • 776 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.174

  • S = 1.01

  • 909 reflections

  • 64 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018369/at2577sup1.cif

e-64-o1315-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018369/at2577Isup2.hkl

e-64-o1315-Isup2.hkl (45.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The Weinreb amides are widely recognized as effective acylating agents since they react with organometallics (RM, M = MgBr, Li) to produce ketones without side products in organic synthesis, including the total synthesis of complex natural products (Nahm & Weinreb, 1981). We here reported the structure of the Weinreb amides related title compound, (I).

Compound (I), is the synthetic intermediate, whose molecule is the centrosymmetric structure (Fig.1). In the symmetric unit, the C1—O1 bond distance is 1.224 (2) Å, which displays a typical double-bond of ketone carbonyl. Whereas, the N1—C1 bond distance of 1.342 (2) Å is obviously shorter than N1—C4 of 1.445 (2) Å, indicates that amide bond N1—C1 has some proporties of double-bond.

Experimental

Triethylamine (25 ml, 180 mmol) was added slowly by cannulation to a stirred suspension of N,O-dimethylhydroxylamine (9.0 g, 92.25 mmol) and succinyl chloride (100 ml) in dichloromethane at 273 K under N2. After stirring for 2 h the solution was allowed to warm to room temperature and quenched with saturated aqueous sodium bicarbonate solution (50 ml). The layers were separated and the aqueous layer was extracted with dichloromethane (2×25 ml). The combined organic extracts were washed with brine (18.5 ml), dried (MgSO4) and evaporated under reduced pressure to give the compound (I) (7.365 g, 83%) as light brown needles. The molecule formula, C8H16N2O4 was established by EIMS m/z:144(M+ –N(CH3)OCH3). Spectroscopic analysis, 1H NMR (400 MHz; CDCl3-d6) δ:3.75 (6H, s, OCH3), 3.19 (6H, s, NCH3) and 2.78 (4H, s, CH2); 13C NMR (400 MHz; CDCl3-d6) δ:173.8 (C=O), 61.6 (OCH3), 32.6 and 26.8.

Refinement

H atoms were treated as riding, with C—H distances in the range of 0.96–0.97 Å, and were refined as riding with Uiso(H) =1.2Ueq(Cmethylene) and Uiso(H)=1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C8H16N2O4 F000 = 220
Mr = 204.23 Dx = 1.291 Mg m3
Monoclinic, P21/c Mo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 925 reflections
a = 4.2645 (15) Å θ = 2.6–26.6º
b = 11.152 (4) Å µ = 0.10 mm1
c = 11.165 (4) Å T = 296 (2) K
β = 98.485 (5)º Block, yellow
V = 525.2 (3) Å3 0.20 × 0.16 × 0.13 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer 909 independent reflections
Radiation source: fine-focus sealed tube 776 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.015
T = 296(2) K θmax = 25.0º
φ and ω scans θmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001) h = −5→5
Tmin = 0.980, Tmax = 0.987 k = −9→13
2116 measured reflections l = −13→11

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.174   w = 1/[σ2(Fo2) + (0.117P)2 + 0.1547P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
909 reflections Δρmax = 0.25 e Å3
64 parameters Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2198 (3) 0.51856 (11) 0.21773 (11) 0.0633 (4)
O2 0.4066 (3) 0.76550 (10) 0.05213 (10) 0.0498 (3)
N1 0.3748 (4) 0.69395 (13) 0.15260 (12) 0.0525 (4)
C1 0.2269 (4) 0.58794 (14) 0.13325 (15) 0.0434 (4)
C2 0.0721 (4) 0.56191 (14) 0.00580 (15) 0.0452 (4)
H2A 0.2289 0.5689 −0.0485 0.054*
H2B −0.0920 0.6210 −0.0183 0.054*
C3 0.2116 (5) 0.87038 (16) 0.0512 (2) 0.0643 (6)
H3A 0.2351 0.9186 −0.0181 0.096*
H3B 0.2754 0.9159 0.1237 0.096*
H3C −0.0061 0.8468 0.0475 0.096*
C4 0.5720 (5) 0.72712 (18) 0.26424 (17) 0.0616 (5)
H4A 0.5347 0.6728 0.3274 0.092*
H4B 0.5214 0.8073 0.2861 0.092*
H4C 0.7910 0.7232 0.2535 0.092*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0974 (10) 0.0429 (6) 0.0457 (7) −0.0074 (6) −0.0023 (6) 0.0066 (5)
O2 0.0637 (7) 0.0412 (6) 0.0458 (7) −0.0059 (5) 0.0127 (5) 0.0014 (5)
N1 0.0754 (9) 0.0421 (7) 0.0376 (8) −0.0108 (7) 0.0004 (7) −0.0014 (6)
C1 0.0550 (9) 0.0329 (7) 0.0413 (9) 0.0029 (6) 0.0035 (7) 0.0003 (7)
C2 0.0568 (9) 0.0341 (8) 0.0425 (9) −0.0008 (7) 0.0003 (7) −0.0004 (7)
C3 0.0740 (12) 0.0423 (10) 0.0760 (13) −0.0006 (8) 0.0094 (10) 0.0030 (9)
C4 0.0767 (12) 0.0605 (11) 0.0445 (10) −0.0137 (9) −0.0015 (9) −0.0093 (9)

Geometric parameters (Å, °)

O1—C1 1.2238 (19) C2—H2B 0.9700
O2—N1 1.3994 (18) C3—H3A 0.9600
O2—C3 1.434 (2) C3—H3B 0.9600
N1—C1 1.342 (2) C3—H3C 0.9600
N1—C4 1.445 (2) C4—H4A 0.9600
C1—C2 1.506 (2) C4—H4B 0.9600
C2—C2i 1.510 (3) C4—H4C 0.9600
C2—H2A 0.9700
N1—O2—C3 110.25 (13) O2—C3—H3A 109.5
C1—N1—O2 118.16 (13) O2—C3—H3B 109.5
C1—N1—C4 124.34 (15) H3A—C3—H3B 109.5
O2—N1—C4 115.63 (14) O2—C3—H3C 109.5
O1—C1—N1 119.82 (15) H3A—C3—H3C 109.5
O1—C1—C2 123.31 (15) H3B—C3—H3C 109.5
N1—C1—C2 116.87 (14) N1—C4—H4A 109.5
C1—C2—C2i 111.95 (17) N1—C4—H4B 109.5
C1—C2—H2A 109.2 H4A—C4—H4B 109.5
C2i—C2—H2A 109.2 N1—C4—H4C 109.5
C1—C2—H2B 109.2 H4A—C4—H4C 109.5
C2i—C2—H2B 109.2 H4B—C4—H4C 109.5
H2A—C2—H2B 107.9
C3—O2—N1—C1 110.95 (17) O2—N1—C1—C2 −7.3 (2)
C3—O2—N1—C4 −83.94 (19) C4—N1—C1—C2 −171.05 (17)
O2—N1—C1—O1 173.52 (15) O1—C1—C2—C2i −3.6 (3)
C4—N1—C1—O1 9.8 (3) N1—C1—C2—C2i 177.24 (18)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2577).

References

  1. Bruker (2001). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Nahm, S. & Weinreb, S. M. (1981). Tetrahedron Lett.22, 3815–3818.
  3. Sheldrick, G. M. (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808018369/at2577sup1.cif

e-64-o1315-sup1.cif (12.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808018369/at2577Isup2.hkl

e-64-o1315-Isup2.hkl (45.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES