Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):o1219. doi: 10.1107/S1600536808016620

(E)-N-(2,3,4-Trimeth­oxy-6-methyl­benzyl­idene)aniline

Hui Zhang a,*
PMCID: PMC2961677  PMID: 21202856

Abstract

In the title compound, C17H19NO3, the C—C=N—C torsion angle between the benzene and phenyl rings is −177.3 (2)°, and the dihedral angle between the rings is 54.6 (2)°. The crystal structure is stabilized by intra­molecular hydrogen bonds and weak π–π and C—H⋯π inter­actions.

Related literature

For related literature, see: Zhang et al. (2005).graphic file with name e-64-o1219-scheme1.jpg

Experimental

Crystal data

  • C17H19NO3

  • M r = 285.33

  • Triclinic, Inline graphic

  • a = 8.3126 (13) Å

  • b = 9.9938 (17) Å

  • c = 10.8661 (19) Å

  • α = 110.102 (2)°

  • β = 111.995 (2)°

  • γ = 92.7000 (10)°

  • V = 769.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 (2) K

  • 0.50 × 0.48 × 0.47 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.959, T max = 0.962

  • 3966 measured reflections

  • 2650 independent reflections

  • 1571 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.170

  • S = 1.00

  • 2650 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016620/bx2141sup1.cif

e-64-o1219-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016620/bx2141Isup2.hkl

e-64-o1219-Isup2.hkl (130.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the ring C12–C17.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.93 2.32 2.714 (3) 105
C8—H8C⋯O2 0.96 2.47 3.062 (5) 120
C9—H9C⋯O1 0.96 2.53 3.079 (4) 116
C10—H10CCg2i 0.96 2.98 3.894 (4) 160

Symmetry code: (i) Inline graphic.

Table 2. π–π interactions (Å, °).

Cg1 is the centroid of the ring C2–C7. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgICgJ CgICgJ Dihedral angle Interplanar distance Offset
Cg1⋯Cg1i 4.236 (1)   3.523 (1) 2.352

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The preparation, properties and applications of Schiff bases are important in the development of coordination chemistry. In this paper, the structure of the title compound, (I), is reported. The molecular structure of (I) is illustrated in Fig. 1. The bond lengths and angles of the title compound agree with those in the related compound 2,3,4-Trimethoxy-6-methylbenzaldehyde (Zhang et al., 2005), as representative example. The dihedral angle between the two phenyl rings is 125.4 (2)°. The crystal structure is stabilized by an intramolecular hydrogen bonding and weak π–π and C—H···π interactions ( Table 1 and Table 2).

Experimental

To a solution of p-toluidine (0.535 g, 5 mmol) and potassium acetate (0.980 g, 10 mmol) in distilled water (10 ml), 2,3,4-Trimethoxy-6-methylbenzaldehyde (1.04 g, 5 mmol) in ethylalcohol (20 ml) was added drop by drop, the solution was stirred for 1 h at reflux temperature. The precipitate was filtered and dried. 10 mg of (I) was dissolved in 15 ml ethanol and the solution was allowed to evaporate at room temperature. Straw yellow single crystals of the title compound were formed after one week.

Refinement

The H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), drawn with 30% probability ellipsoids.

Crystal data

C17H19NO3 Z = 2
Mr = 285.33 F000 = 304
Triclinic, P1 Dx = 1.231 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 8.3126 (13) Å Cell parameters from 1209 reflections
b = 9.9938 (17) Å θ = 2.4–26.5º
c = 10.8661 (19) Å µ = 0.08 mm1
α = 110.102 (2)º T = 298 (2) K
β = 111.995 (2)º Block, yellow
γ = 92.7000 (10)º 0.50 × 0.48 × 0.47 mm
V = 769.8 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer 2650 independent reflections
Radiation source: fine-focus sealed tube 1571 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.034
T = 298(2) K θmax = 25.0º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 1997) h = −9→9
Tmin = 0.959, Tmax = 0.962 k = −7→11
3966 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053 H-atom parameters constrained
wR(F2) = 0.170   w = 1/[σ2(Fo2) + (0.0809P)2 + 0.0591P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
2650 reflections Δρmax = 0.19 e Å3
194 parameters Δρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6434 (3) 0.0882 (2) 0.7849 (2) 0.0637 (6)
O1 0.1396 (2) 0.11706 (18) 0.64766 (19) 0.0619 (5)
O2 0.0101 (2) 0.3729 (2) 0.67375 (19) 0.0642 (5)
O3 0.2329 (2) 0.62688 (18) 0.78978 (19) 0.0626 (5)
C1 0.4895 (3) 0.1089 (3) 0.7390 (3) 0.0489 (6)
H1 0.3988 0.0268 0.6846 0.059*
C2 0.4379 (3) 0.2505 (2) 0.7625 (2) 0.0424 (6)
C3 0.2546 (3) 0.2493 (2) 0.7129 (2) 0.0457 (6)
C4 0.1898 (3) 0.3749 (3) 0.7225 (2) 0.0468 (6)
C5 0.3079 (3) 0.5078 (3) 0.7853 (2) 0.0471 (6)
C6 0.4884 (3) 0.5112 (3) 0.8370 (2) 0.0470 (6)
H6 0.5664 0.6004 0.8804 0.056*
C7 0.5564 (3) 0.3853 (3) 0.8261 (2) 0.0452 (6)
C8 0.0442 (5) 0.0901 (4) 0.7236 (4) 0.0963 (11)
H8A 0.1254 0.0873 0.8125 0.144*
H8B −0.0376 −0.0015 0.6660 0.144*
H8C −0.0198 0.1663 0.7438 0.144*
C9 −0.0840 (4) 0.3143 (4) 0.5226 (3) 0.0889 (11)
H9A −0.0245 0.3586 0.4815 0.133*
H9B −0.2018 0.3333 0.4977 0.133*
H9C −0.0900 0.2112 0.4858 0.133*
C10 0.3479 (4) 0.7643 (3) 0.8476 (3) 0.0751 (9)
H10A 0.4278 0.7854 0.9456 0.113*
H10B 0.2790 0.8385 0.8448 0.113*
H10C 0.4144 0.7616 0.7915 0.113*
C11 0.7545 (3) 0.4004 (3) 0.8838 (3) 0.0616 (7)
H11A 0.8096 0.5015 0.9259 0.092*
H11B 0.7866 0.3496 0.8066 0.092*
H11C 0.7936 0.3599 0.9558 0.092*
C12 0.6728 (3) −0.0566 (3) 0.7476 (3) 0.0504 (6)
C13 0.7910 (3) −0.0901 (3) 0.8552 (3) 0.0649 (8)
H13 0.8417 −0.0205 0.9492 0.078*
C14 0.8357 (4) −0.2241 (3) 0.8266 (4) 0.0736 (8)
H14 0.9156 −0.2451 0.9009 0.088*
C15 0.7636 (5) −0.3261 (3) 0.6901 (4) 0.0758 (9)
H15 0.7945 −0.4169 0.6708 0.091*
C16 0.6450 (4) −0.2958 (3) 0.5803 (3) 0.0746 (9)
H16 0.5953 −0.3660 0.4867 0.090*
C17 0.5994 (4) −0.1610 (3) 0.6089 (3) 0.0614 (7)
H17 0.5190 −0.1404 0.5345 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0507 (14) 0.0530 (14) 0.0845 (16) 0.0168 (11) 0.0250 (12) 0.0260 (12)
O1 0.0464 (10) 0.0564 (11) 0.0774 (13) 0.0030 (8) 0.0300 (9) 0.0160 (9)
O2 0.0420 (10) 0.0785 (13) 0.0730 (13) 0.0211 (9) 0.0266 (9) 0.0264 (10)
O3 0.0661 (12) 0.0558 (11) 0.0766 (12) 0.0272 (9) 0.0343 (10) 0.0311 (9)
C1 0.0447 (15) 0.0542 (15) 0.0534 (14) 0.0107 (12) 0.0250 (12) 0.0224 (12)
C2 0.0423 (13) 0.0477 (14) 0.0424 (13) 0.0130 (11) 0.0208 (11) 0.0194 (10)
C3 0.0430 (14) 0.0489 (15) 0.0461 (13) 0.0089 (11) 0.0227 (11) 0.0150 (11)
C4 0.0398 (14) 0.0578 (16) 0.0471 (14) 0.0158 (12) 0.0220 (11) 0.0202 (11)
C5 0.0522 (15) 0.0507 (15) 0.0475 (14) 0.0196 (12) 0.0266 (12) 0.0219 (11)
C6 0.0465 (14) 0.0481 (14) 0.0461 (13) 0.0063 (11) 0.0197 (11) 0.0181 (11)
C7 0.0427 (14) 0.0535 (15) 0.0458 (13) 0.0130 (12) 0.0214 (11) 0.0230 (11)
C8 0.110 (3) 0.081 (2) 0.134 (3) 0.0123 (19) 0.084 (3) 0.046 (2)
C9 0.0557 (18) 0.108 (3) 0.075 (2) 0.0228 (18) 0.0085 (16) 0.0230 (19)
C10 0.094 (2) 0.0561 (18) 0.080 (2) 0.0248 (16) 0.0366 (18) 0.0302 (15)
C11 0.0456 (15) 0.0611 (17) 0.0775 (18) 0.0098 (12) 0.0219 (14) 0.0304 (14)
C12 0.0419 (14) 0.0499 (15) 0.0683 (17) 0.0136 (11) 0.0293 (13) 0.0256 (13)
C13 0.0525 (16) 0.0590 (17) 0.0702 (18) 0.0132 (13) 0.0153 (14) 0.0215 (14)
C14 0.0603 (18) 0.071 (2) 0.094 (2) 0.0209 (15) 0.0252 (17) 0.0437 (18)
C15 0.094 (2) 0.0582 (19) 0.104 (3) 0.0350 (17) 0.061 (2) 0.0383 (18)
C16 0.099 (2) 0.0641 (19) 0.0689 (19) 0.0214 (17) 0.0485 (18) 0.0202 (15)
C17 0.0710 (18) 0.0653 (18) 0.0662 (18) 0.0230 (14) 0.0393 (15) 0.0334 (15)

Geometric parameters (Å, °)

N1—C1 1.244 (3) C9—H9A 0.9600
N1—C12 1.422 (3) C9—H9B 0.9600
O1—C3 1.376 (3) C9—H9C 0.9600
O1—C8 1.416 (3) C10—H10A 0.9600
O2—C4 1.382 (3) C10—H10B 0.9600
O2—C9 1.409 (3) C10—H10C 0.9600
O3—C5 1.363 (3) C11—H11A 0.9600
O3—C10 1.423 (3) C11—H11B 0.9600
C1—C2 1.464 (3) C11—H11C 0.9600
C1—H1 0.9300 C12—C13 1.373 (4)
C2—C7 1.410 (3) C12—C17 1.379 (4)
C2—C3 1.411 (3) C13—C14 1.370 (4)
C3—C4 1.375 (3) C13—H13 0.9300
C4—C5 1.396 (3) C14—C15 1.355 (4)
C5—C6 1.385 (3) C14—H14 0.9300
C6—C7 1.389 (3) C15—C16 1.372 (4)
C6—H6 0.9300 C15—H15 0.9300
C7—C11 1.505 (3) C16—C17 1.380 (4)
C8—H8A 0.9600 C16—H16 0.9300
C8—H8B 0.9600 C17—H17 0.9300
C8—H8C 0.9600
C1—N1—C12 119.4 (2) O2—C9—H9C 109.5
C3—O1—C8 116.2 (2) H9A—C9—H9C 109.5
C4—O2—C9 114.82 (19) H9B—C9—H9C 109.5
C5—O3—C10 117.8 (2) O3—C10—H10A 109.5
N1—C1—C2 126.0 (2) O3—C10—H10B 109.5
N1—C1—H1 117.0 H10A—C10—H10B 109.5
C2—C1—H1 117.0 O3—C10—H10C 109.5
C7—C2—C3 118.4 (2) H10A—C10—H10C 109.5
C7—C2—C1 125.0 (2) H10B—C10—H10C 109.5
C3—C2—C1 116.5 (2) C7—C11—H11A 109.5
C4—C3—O1 120.0 (2) C7—C11—H11B 109.5
C4—C3—C2 121.8 (2) H11A—C11—H11B 109.5
O1—C3—C2 118.1 (2) C7—C11—H11C 109.5
C3—C4—O2 121.5 (2) H11A—C11—H11C 109.5
C3—C4—C5 119.4 (2) H11B—C11—H11C 109.5
O2—C4—C5 119.1 (2) C13—C12—C17 118.6 (2)
O3—C5—C6 124.8 (2) C13—C12—N1 117.4 (2)
O3—C5—C4 115.7 (2) C17—C12—N1 123.8 (2)
C6—C5—C4 119.5 (2) C14—C13—C12 121.1 (3)
C5—C6—C7 122.0 (2) C14—C13—H13 119.4
C5—C6—H6 119.0 C12—C13—H13 119.4
C7—C6—H6 119.0 C15—C14—C13 120.0 (3)
C6—C7—C2 118.9 (2) C15—C14—H14 120.0
C6—C7—C11 117.9 (2) C13—C14—H14 120.0
C2—C7—C11 123.2 (2) C14—C15—C16 120.2 (3)
O1—C8—H8A 109.5 C14—C15—H15 119.9
O1—C8—H8B 109.5 C16—C15—H15 119.9
H8A—C8—H8B 109.5 C15—C16—C17 119.9 (3)
O1—C8—H8C 109.5 C15—C16—H16 120.0
H8A—C8—H8C 109.5 C17—C16—H16 120.0
H8B—C8—H8C 109.5 C12—C17—C16 120.1 (3)
O2—C9—H9A 109.5 C12—C17—H17 119.9
O2—C9—H9B 109.5 C16—C17—H17 119.9
H9A—C9—H9B 109.5
C12—N1—C1—C2 −177.3 (2) O2—C4—C5—C6 178.8 (2)
N1—C1—C2—C7 8.3 (4) O3—C5—C6—C7 −178.4 (2)
N1—C1—C2—C3 −173.8 (2) C4—C5—C6—C7 1.2 (3)
C8—O1—C3—C4 −70.8 (3) C5—C6—C7—C2 −1.1 (3)
C8—O1—C3—C2 112.1 (3) C5—C6—C7—C11 179.2 (2)
C7—C2—C3—C4 1.3 (3) C3—C2—C7—C6 −0.2 (3)
C1—C2—C3—C4 −176.7 (2) C1—C2—C7—C6 177.7 (2)
C7—C2—C3—O1 178.33 (19) C3—C2—C7—C11 179.6 (2)
C1—C2—C3—O1 0.3 (3) C1—C2—C7—C11 −2.6 (4)
O1—C3—C4—O2 3.0 (3) C1—N1—C12—C13 −136.1 (3)
C2—C3—C4—O2 −180.0 (2) C1—N1—C12—C17 48.6 (4)
O1—C3—C4—C5 −178.2 (2) C17—C12—C13—C14 −0.1 (4)
C2—C3—C4—C5 −1.2 (3) N1—C12—C13—C14 −175.7 (2)
C9—O2—C4—C3 −72.5 (3) C12—C13—C14—C15 0.3 (4)
C9—O2—C4—C5 108.7 (3) C13—C14—C15—C16 −0.3 (5)
C10—O3—C5—C6 2.1 (3) C14—C15—C16—C17 0.2 (4)
C10—O3—C5—C4 −177.6 (2) C13—C12—C17—C16 0.0 (4)
C3—C4—C5—O3 179.6 (2) N1—C12—C17—C16 175.2 (2)
O2—C4—C5—O3 −1.6 (3) C15—C16—C17—C12 0.0 (4)
C3—C4—C5—C6 −0.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1 0.93 2.32 2.714 (3) 105
C8—H8C···O2 0.96 2.47 3.062 (5) 120
C9—H9C···O1 0.96 2.53 3.079 (4) 116
C10—H10C···Cg2i 0.96 2.98 3.894 (4) 160

Symmetry codes: (i) x, y+1, z.

Table 2 π–π interactions (Å, °)

Cg1 is the centroid of ring C2–C7. The offset is defined as the distance between CgI and the perpendicular projection of CgJ on ring I.

CgI-CgJ CgI···CgJ Dihedral angle Interplanar distance Offset
Cg1-Cg1i 4.236 (1) 0 3.523 (1) 2.352

Symmetry code: (i) 1-x, 1-y, 2-z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2141).

References

  1. Bruker (1997). SADABS, SMART and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Zhang, W.-J., Lu, M., Li, C.-B. & Zhou, W.-Y. (2005). Acta Cryst. E61, o3222–o3223.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016620/bx2141sup1.cif

e-64-o1219-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016620/bx2141Isup2.hkl

e-64-o1219-Isup2.hkl (130.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES