Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 28;64(Pt 7):o1361. doi: 10.1107/S1600536808019016

4-(2,3-Dimethyl­phen­yl)piperazin-1-ium chloride monohydrate

Imen Ben Gharbia a, Riadh Kefi a, Meher El Glaoui a, Erwann Jeanneau b, Cherif Ben Nasr a,*
PMCID: PMC2961679  PMID: 21202979

Abstract

The title compound, C12H19N2 +·Cl·H2O, contains a network of 4-(2,3-dimethyl­phen­yl)piperazin-1-ium cations, water mol­ecules and chloride anions. The crystal packing is influenced by O—H⋯Cl, N—H⋯Cl, N—H⋯O, C—H⋯O and C—H⋯Cl hydrogen bonds, resulting in structure with an open-framework architecture.

Related literature

For related literature, see: Ben Gharbia et al. (2005, 2007); Bernstein et al. (1995); Pajewski et al. (2004); Sessler et al. (2003); Schmidtchen & Berge (1997). For the refinement weighting scheme, see: Prince (1982); Watkin (1994).graphic file with name e-64-o1361-scheme1.jpg

Experimental

Crystal data

  • C12H19N2 +·Cl·H2O

  • M r = 244.76

  • Triclinic, Inline graphic

  • a = 7.5439 (3) Å

  • b = 9.4204 (3) Å

  • c = 10.4347 (4) Å

  • α = 72.733 (2)°

  • β = 74.152 (2)°

  • γ = 70.250 (2)°

  • V = 654.05 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.13 × 0.12 × 0.09 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 5719 measured reflections

  • 3073 independent reflections

  • 2601 reflections with I > 2σ(I)

  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.035

  • S = 1.10

  • 2491 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019016/cf2207sup1.cif

e-64-o1361-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019016/cf2207Isup2.hkl

e-64-o1361-Isup2.hkl (136.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H3⋯Cl1 0.90 2.18 3.069 (1) 169
N2—H4⋯O1i 0.91 1.86 2.776 (2) 175
O1—H1⋯Cl1 0.82 2.32 3.120 (1) 165
O1—H2⋯Cl1ii 0.83 2.31 3.136 (1) 171
C10—H15⋯Cl1iii 0.99 2.87 3.846 (1) 168
C12—H20⋯Cl1iv 0.97 2.84 3.779 (3) 161
C12—H19⋯O1v 0.99 2.73 3.448 (2) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

We acknowledge support provided by the Secretary of State for Scientific Research and Technology of Tunisia.

supplementary crystallographic information

Comment

The coordination chemistry of anions is a fast-growing area of supramolecular chemistry (Schmidtchen & Berge, 1997), on account of the importance of anion binding, recognition and transport in many biochemical processes (Pajewski et al., 2004). Thus, the Cl- anion has been successfully used to assemble double-helical motifs of various molecules (Sessler et al., 2003). Here a new member of this family, the title compound, is presented, which was obtained during our studies of the preparation of new organic hydrochloride compounds. As shown in Fig. 1, the asymmetric unit of the crystal structure of the title compound contains a 4-(2,3-dimethylphenyl)piperazin-1-ium cation, a chloride anion and a water molecule, associated in a hydrogen-bonded network. Two water molecules and two Cl- anions are interconnected through O—H···Cl hydrogen bonds, forming an 8-membered ring with graph-set R24(8) Bernstein et al., 1995). These entities are connected to two antiparallel organic cations via N—H···Cl, N—H···O and C—H···Cl hydrogen-bonding interactions to construct a convoluted hydrogen-bonded chain which runs in the c-axis direction (Fig. 2). When projected along the b axis, the chains have a marked zigzag structure and somewhat resemble a helix (Fig. 3). In addition to the hydrogen-bonding associations to Cl1 and O1, the organic cations have a second role by linking these chains to each other to form layers parallel to the bc plane through C—H···O hydrogen bonds. Fig. 3 shows that these planes are interconnected by NH2+ groups to form an open framework architecture through hydrogen-bond interactions. An examination of the organic group geometrical features shows that the carbon atoms in the benzene ring of the title compound have a good coplanarity and they form a conjugated ring with an average deviation of 0.013 Å. The mean value of the C—C bond lengths [1.3967 (17) Å], which is between a single bond and a double bond, agrees with that in phenylpiperazinium tetrachloridozincate(II) [1.384 (4) Å] (Ben Gharbia et al., 2005). The piperazine-1,4-diium ring of the title compound adopts a typical chair conformation and its geometric parameters [dav(C—N) = 1.4818 (16) and dav(C—C) = 1.5437 (17) Å] are in full agreement with those found in 4-(2,3-dimethylphenyl)piperazin-1-ium tetrachloridozincate(II) (Ben Gharbia et al., 2007).

Experimental

An aqueous 1M HCl solution and 1-(2,3-dimethylphenyl)piperazine in a 1:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. Low-angle reflections possibly affected by the beam-stop and some other outliers were omitted from the refinement.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of (I), showing 40% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of (I), viewed down the a axis, showing the O—H···Cl, N—H···Cl, N—H···O, C—H···O and C—H···Cl interactions (dashed lines) between the 4-(2,3-dimethylphenyl)piperazin-1-ium cation, water molecule and chloride anion.

Fig. 3.

Fig. 3.

The packing of (I), viewed down the b axis, showing the zigzag character of the structure. Hydrogen bonds are indicated by dashed lines.

Crystal data

C12H19N2+·Cl·H2O Z = 2
Mr = 244.76 F000 = 264
Triclinic, P1 Dx = 1.243 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71069 Å
a = 7.5439 (3) Å Cell parameters from 2750 reflections
b = 9.4204 (3) Å θ = 0.4–27.9º
c = 10.4347 (4) Å µ = 0.28 mm1
α = 72.733 (2)º T = 150 K
β = 74.152 (2)º Block, colorless
γ = 70.250 (2)º 0.13 × 0.12 × 0.09 mm
V = 654.05 (4) Å3

Data collection

Nonius KappaCCD diffractometer 2601 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.016
T = 150 K θmax = 27.9º
φ and ω scans θmin = 2.1º
Absorption correction: none h = −9→9
5719 measured reflections k = −12→12
3073 independent reflections l = −13→13

Refinement

Refinement on F Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036   w = [1-(Fo-Fc)2/36σ2(F)]2/[0.443T0(x) + 0.129T1(x) + 0.131T2(x)] where Ti are Chebychev polynomials and x = Fc/Fmax (Prince, 1982; Watkin, 1994)
wR(F2) = 0.035 (Δ/σ)max = 0.0004
S = 1.10 Δρmax = 0.25 e Å3
2491 reflections Δρmin = −0.20 e Å3
145 parameters Extinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.09326 (17) 0.26100 (14) 0.53871 (13) 0.0211
C2 −0.08069 (18) 0.18226 (14) 0.67481 (13) 0.0224
C3 −0.24822 (19) 0.15986 (14) 0.76843 (13) 0.0243
C4 −0.42381 (18) 0.21709 (15) 0.72522 (14) 0.0270
C5 −0.43454 (18) 0.29399 (16) 0.59077 (14) 0.0285
C6 −0.26999 (18) 0.31526 (15) 0.49687 (13) 0.0255
C7 0.18840 (18) 0.14963 (15) 0.38467 (14) 0.0276
C8 0.38588 (19) 0.16564 (16) 0.30991 (15) 0.0313
C9 0.24578 (19) 0.45044 (15) 0.26085 (13) 0.0260
C10 0.05184 (17) 0.42554 (14) 0.33543 (13) 0.0230
C11 0.1080 (2) 0.12337 (17) 0.72288 (15) 0.0320
C12 −0.2398 (2) 0.07656 (18) 0.91485 (14) 0.0353
Cl1 0.77820 (5) 0.34324 (4) 0.11653 (4) 0.0340
O1 0.78625 (14) 0.68790 (12) 0.00994 (10) 0.0353
N1 0.07922 (14) 0.28419 (12) 0.44468 (11) 0.0216
N2 0.36750 (15) 0.31276 (13) 0.20308 (12) 0.0278
H1 0.7848 0.5995 0.0526 0.0528*
H2 0.9007 0.6873 −0.0182 0.0528*
H3 0.4845 0.3270 0.1661 0.0430*
H4 0.3144 0.3085 0.1358 0.0437*
H5 −0.5385 0.2058 0.7916 0.0322*
H6 −0.5565 0.3352 0.5610 0.0341*
H7 −0.2770 0.3659 0.4045 0.0295*
H8 0.1198 0.1410 0.3200 0.0321*
H9 0.2040 0.0561 0.4575 0.0315*
H10 0.4588 0.0790 0.2644 0.0369*
H11 0.4582 0.1695 0.3749 0.0356*
H12 0.3114 0.4642 0.3220 0.0314*
H13 0.2299 0.5429 0.1850 0.0309*
H14 −0.0266 0.5162 0.3773 0.0269*
H15 −0.0141 0.4180 0.2684 0.0273*
H16 0.2087 0.1594 0.6514 0.0467*
H17 0.1484 0.0098 0.7464 0.0473*
H18 0.0940 0.1606 0.8047 0.0484*
H19 −0.1476 −0.0282 0.9197 0.0537*
H20 −0.2011 0.1364 0.9587 0.0526*
H21 −0.3671 0.0679 0.9639 0.0532*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0204 (5) 0.0193 (5) 0.0239 (6) −0.0065 (4) −0.0025 (4) −0.0057 (5)
C2 0.0250 (6) 0.0184 (5) 0.0251 (6) −0.0079 (5) −0.0054 (5) −0.0040 (5)
C3 0.0289 (6) 0.0211 (6) 0.0243 (6) −0.0104 (5) −0.0022 (5) −0.0059 (5)
C4 0.0243 (6) 0.0269 (6) 0.0298 (7) −0.0099 (5) 0.0020 (5) −0.0098 (5)
C5 0.0213 (6) 0.0308 (7) 0.0331 (7) −0.0073 (5) −0.0039 (5) −0.0081 (6)
C6 0.0231 (6) 0.0273 (6) 0.0250 (6) −0.0079 (5) −0.0040 (5) −0.0040 (5)
C7 0.0241 (6) 0.0215 (6) 0.0347 (7) −0.0077 (5) 0.0025 (5) −0.0088 (5)
C8 0.0229 (6) 0.0274 (7) 0.0392 (8) −0.0073 (5) 0.0025 (5) −0.0088 (6)
C9 0.0289 (6) 0.0260 (6) 0.0255 (6) −0.0128 (5) −0.0024 (5) −0.0061 (5)
C10 0.0236 (6) 0.0224 (6) 0.0220 (6) −0.0081 (5) −0.0026 (5) −0.0034 (5)
C11 0.0286 (7) 0.0337 (7) 0.0317 (7) −0.0115 (6) −0.0113 (5) 0.0038 (6)
C12 0.0452 (8) 0.0378 (8) 0.0246 (7) −0.0210 (7) −0.0034 (6) −0.0016 (6)
Cl1 0.02788 (17) 0.0430 (2) 0.03519 (18) −0.01831 (14) −0.00224 (13) −0.00861 (14)
O1 0.0303 (5) 0.0377 (6) 0.0367 (5) −0.0128 (4) 0.0007 (4) −0.0094 (4)
N1 0.0205 (5) 0.0191 (5) 0.0234 (5) −0.0059 (4) −0.0013 (4) −0.0044 (4)
N2 0.0229 (5) 0.0332 (6) 0.0291 (6) −0.0136 (4) 0.0028 (4) −0.0101 (5)

Geometric parameters (Å, °)

C9—C10 1.5176 (17) C6—H7 0.947
C9—N2 1.4986 (17) C5—C4 1.3851 (19)
C9—H12 0.966 C5—H6 0.968
C9—H13 0.985 C4—C3 1.3957 (19)
C10—N1 1.4686 (16) C4—H5 0.965
C10—H14 1.005 C3—C2 1.4070 (17)
C10—H15 0.993 C3—C12 1.5038 (19)
C7—C8 1.5159 (17) C2—C11 1.5090 (17)
C7—N1 1.4701 (16) C12—H21 0.975
C7—H9 0.974 C12—H20 0.974
C7—H8 0.991 C12—H19 0.993
C8—N2 1.4900 (18) C11—H18 0.983
C8—H11 0.995 C11—H16 0.981
C8—H10 0.989 C11—H17 0.981
C1—C6 1.3979 (17) O1—H1 0.822
C1—C2 1.4060 (17) O1—H2 0.831
C1—N1 1.4391 (15) N2—H3 0.900
C6—C5 1.3886 (18) N2—H4 0.914
C10—C9—N2 109.56 (10) C4—C5—H6 120.8
C10—C9—H12 111.0 C5—C4—C3 120.72 (12)
N2—C9—H12 108.8 C5—C4—H5 120.5
C10—C9—H13 110.3 C3—C4—H5 118.7
N2—C9—H13 108.5 C4—C3—C2 119.63 (12)
H12—C9—H13 108.6 C4—C3—C12 119.84 (12)
C9—C10—N1 109.41 (10) C2—C3—C12 120.53 (12)
C9—C10—H14 109.0 C3—C2—C1 119.20 (11)
N1—C10—H14 108.9 C3—C2—C11 119.40 (12)
C9—C10—H15 108.6 C1—C2—C11 121.39 (11)
N1—C10—H15 111.3 C3—C12—H21 109.5
H14—C10—H15 109.6 C3—C12—H20 109.5
C8—C7—N1 110.04 (10) H21—C12—H20 107.6
C8—C7—H9 108.4 C3—C12—H19 110.4
N1—C7—H9 109.2 H21—C12—H19 109.8
C8—C7—H8 109.4 H20—C12—H19 109.9
N1—C7—H8 110.2 C2—C11—H18 109.7
H9—C7—H8 109.5 C2—C11—H16 110.8
C7—C8—N2 109.88 (11) H18—C11—H16 109.0
C7—C8—H11 110.1 C2—C11—H17 110.4
N2—C8—H11 107.8 H18—C11—H17 108.5
C7—C8—H10 111.2 H16—C11—H17 108.4
N2—C8—H10 108.0 H1—O1—H2 107.1
H11—C8—H10 109.9 C7—N1—C10 109.62 (10)
C6—C1—C2 120.31 (11) C7—N1—C1 112.16 (9)
C6—C1—N1 121.24 (11) C10—N1—C1 115.19 (10)
C2—C1—N1 118.45 (11) C9—N2—C8 112.04 (10)
C1—C6—C5 119.86 (12) C9—N2—H3 107.5
C1—C6—H7 119.9 C8—N2—H3 109.3
C5—C6—H7 120.2 C9—N2—H4 108.6
C6—C5—C4 120.27 (12) C8—N2—H4 110.2
C6—C5—H6 118.9 H3—N2—H4 109.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H3···Cl1 0.90 2.18 3.069 (1) 169
N2—H4···O1i 0.91 1.86 2.776 (2) 175
O1—H1···Cl1 0.82 2.32 3.120 (1) 165
O1—H2···Cl1ii 0.83 2.31 3.136 (1) 171
C10—H15···Cl1iii 0.99 2.87 3.846 (1) 168
C12—H20···Cl1iv 0.97 2.84 3.779 (3) 161
C12—H19···O1v 0.99 2.73 3.448 (2) 130

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) x−1, y, z; (iv) x−1, y, z+1; (v) x−1, y−1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2207).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct., 220, 333–334.
  3. Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2007). Anal. Sci. (X-Ray Str. Anal. Online), 27, x243–x244.
  4. Bernstein, J., David, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  5. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  6. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  7. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Pajewski, R., Ferdani, R., Schlesinger, P.-H. & Gokel, G.-W. (2004). Chem. Commun. pp. 160–161. [DOI] [PubMed]
  10. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer.
  11. Schmidtchen, F. P. & Berge, M. (1997). Chem. Rev.97, 1609–1646. [DOI] [PubMed]
  12. Sessler, J. L., Camiolo, S. & Gale, P. A. (2003). Coord. Chem. Rev.240, 17–150.
  13. Watkin, D. (1994). Acta Cryst. A50, 411–437.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808019016/cf2207sup1.cif

e-64-o1361-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808019016/cf2207Isup2.hkl

e-64-o1361-Isup2.hkl (136.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES