Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 19;64(Pt 7):o1276. doi: 10.1107/S1600536808017625

N 2-o-Tolyl­benzamidine

Li-Zeng Zhang a, Hong-Bo Tong a,*
PMCID: PMC2961687  PMID: 21202908

Abstract

The asymmetric unit of the title compound, C14H14N2, contains two independent mol­ecules with slightly different conformations; the dihedral angles formed by aromatic rings in the two mol­ecules are 73.2 (1) and 75.0 (1)°. Inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into chains extended in the [100] direction.

Related literature

For general background, see Bourget-Merle et al. (2002). For a related crystal structure, see Surma et al. (1988).graphic file with name e-64-o1276-scheme1.jpg

Experimental

Crystal data

  • C14H14N2

  • M r = 210.27

  • Triclinic, Inline graphic

  • a = 10.347 (2) Å

  • b = 10.697 (2) Å

  • c = 11.495 (2) Å

  • α = 97.088 (4)°

  • β = 103.184 (4)°

  • γ = 95.898 (4)°

  • V = 1218.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.980, T max = 0.986

  • 4978 measured reflections

  • 4158 independent reflections

  • 2913 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.235

  • S = 1.09

  • 4158 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017625/cv2419sup1.cif

e-64-o1276-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017625/cv2419Isup2.hkl

e-64-o1276-Isup2.hkl (203.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N3 0.86 2.25 3.049 (3) 156
N4—H4B⋯N1i 0.86 2.24 3.016 (3) 151

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Youth Foundation of Shanxi University (grant No. 2006026, China) for financial support.

supplementary crystallographic information

Comment

β-Diketiminate complexes are among the most common chelate systems in coordination chemistry (Bourget-Merle et al., 2002). Inspired by getting new chelate system with amidine motif, we got the title compound (I) by additional reaction of PhCN with o-methyl aniline lithium.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), denoted A and B. The N=C bond lengths in both molecules (Table 1) agree well with the corresponding values reported for similar compounds (Surma et al., 1988). The conformations of the two independent molecules are slightly different. In molecule A, the mean plane N3/C22/N4 makes dihedral angles of 85.3 (1) and 21.5 (1)° with phenyl rings C16–C21and C23–C28, respectively. In molecule B, the mean plane N1/C8/N2 makes dihedral angles 86.8 (1) and 18.2 (1)° with phenyl rings C2–C7 and C9–C14, respectively.

In the crystal, intermolecular N—H···N hydrogen bonds (Table 1) link the molecules into chains extended in direction [100].

Experimental

All experiments were performed under an atmosphere of pure argon using Schlenk apparatus and a vacuum line, unless otherwise stated. The solvents used were of reagent grade or better and were freshly distilled under dry dinitrogen and degassed prior to use. Slowly added PhCN(1.03 g,10 mmol)to the solution of compound o-methyl-PhNHLi (1.13 g,10 mmol) in hexane (ca 40 ml)at -0°C., and then stirred for further 12 h.Add it to cold water, and then use chlorform to extract organic phase.The organic phase was slowly concentrated and get the crystal of the title compound.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.86 Å, C—H = 0.93–0.97 Å, and Uiso = 1.2–1.5 Ueq(parent atom).

Figures

Fig. 1.

Fig. 1.

Two independent molecules of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C14H14N2 Z = 4
Mr = 210.27 F000 = 448
Triclinic, P1 Dx = 1.147 Mg m3
Hall symbol: -P 1 Mo Kα radiation λ = 0.71073 Å
a = 10.347 (2) Å Cell parameters from 2024 reflections
b = 10.697 (2) Å θ = 2.4–27.7º
c = 11.495 (2) Å µ = 0.07 mm1
α = 97.088 (4)º T = 298 (2) K
β = 103.184 (4)º Plate, colourless
γ = 95.898 (4)º 0.30 × 0.20 × 0.20 mm
V = 1218.0 (4) Å3

Data collection

Siemens SMART CCD area-detector diffractometer 4158 independent reflections
Radiation source: fine-focus sealed tube 2913 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.021
T = 298(2) K θmax = 25.0º
ω scans θmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1997) h = −10→12
Tmin = 0.980, Tmax = 0.986 k = −12→12
4978 measured reflections l = −13→13

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073 H-atom parameters constrained
wR(F2) = 0.235   w = 1/[σ2(Fo2) + (0.1497P)2] where P = (Fo2 + 2Fc2)/3
S = 1.09 (Δ/σ)max < 0.001
4158 reflections Δρmax = 0.44 e Å3
291 parameters Δρmin = −0.46 e Å3
Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.90491 (17) 0.79986 (19) 0.88806 (17) 0.0538 (5)
N2 0.69224 (19) 0.8197 (2) 0.9148 (2) 0.0688 (6)
H2A 0.6726 0.8582 0.8530 0.083*
H2B 0.6343 0.8055 0.9564 0.083*
C1 0.7749 (4) 0.6552 (3) 0.6545 (3) 0.1043 (12)
H1A 0.7196 0.6274 0.5744 0.156*
H1B 0.7251 0.6362 0.7126 0.156*
H1C 0.8527 0.6121 0.6659 0.156*
C2 0.8172 (3) 0.7949 (3) 0.6711 (2) 0.0644 (7)
C3 0.8023 (3) 0.8623 (3) 0.5739 (3) 0.0852 (9)
H3 0.7654 0.8180 0.4965 0.102*
C4 0.8387 (4) 0.9873 (4) 0.5865 (3) 0.0972 (11)
H4 0.8248 1.0285 0.5189 0.117*
C5 0.8971 (4) 1.0561 (3) 0.7000 (3) 0.0927 (10)
H5 0.9236 1.1433 0.7096 0.111*
C6 0.9149 (3) 0.9920 (3) 0.7983 (3) 0.0680 (7)
H6 0.9543 1.0371 0.8749 0.082*
C7 0.8762 (2) 0.8639 (2) 0.7862 (2) 0.0508 (6)
C8 0.81298 (19) 0.7817 (2) 0.9464 (2) 0.0478 (5)
C9 0.8415 (2) 0.7144 (2) 1.05346 (19) 0.0490 (6)
C10 0.9449 (3) 0.6419 (2) 1.0709 (2) 0.0647 (7)
H10 0.9974 0.6353 1.0152 0.078*
C11 0.9718 (3) 0.5790 (3) 1.1693 (3) 0.0786 (8)
H11 1.0427 0.5313 1.1796 0.094*
C12 0.8962 (3) 0.5858 (3) 1.2516 (3) 0.0787 (8)
H12 0.9148 0.5427 1.3177 0.094*
C13 0.7939 (3) 0.6555 (4) 1.2367 (3) 0.0889 (10)
H13 0.7411 0.6594 1.2922 0.107*
C14 0.7669 (3) 0.7217 (3) 1.1390 (3) 0.0772 (8)
H14 0.6977 0.7715 1.1312 0.093*
N3 0.42879 (17) 0.78365 (18) 0.99087 (16) 0.0513 (5)
N4 0.20510 (18) 0.8125 (2) 0.96875 (18) 0.0692 (7)
H4A 0.2161 0.8348 1.0452 0.083*
H4B 0.1275 0.8098 0.9206 0.083*
C15 0.3694 (4) 0.5807 (3) 1.1207 (3) 0.0896 (9)
H15A 0.3615 0.5260 1.1796 0.134*
H15B 0.4309 0.5519 1.0755 0.134*
H15C 0.2832 0.5790 1.0667 0.134*
C16 0.4201 (2) 0.7134 (3) 1.1833 (2) 0.0616 (7)
C17 0.4444 (3) 0.7462 (4) 1.3083 (3) 0.0825 (9)
H17 0.4277 0.6830 1.3538 0.099*
C18 0.4913 (3) 0.8661 (4) 1.3665 (3) 0.0901 (10)
H18 0.5050 0.8843 1.4500 0.108*
C19 0.5182 (3) 0.9601 (3) 1.3013 (3) 0.0863 (9)
H19 0.5513 1.0424 1.3405 0.104*
C20 0.4963 (2) 0.9325 (3) 1.1778 (2) 0.0642 (7)
H20 0.5155 0.9965 1.1340 0.077*
C21 0.44635 (19) 0.8118 (2) 1.1180 (2) 0.0495 (6)
C22 0.3093 (2) 0.7819 (2) 0.9244 (2) 0.0484 (6)
C23 0.2832 (2) 0.7442 (2) 0.7916 (2) 0.0515 (6)
C24 0.1744 (3) 0.7776 (3) 0.7119 (2) 0.0671 (7)
H24 0.1161 0.8262 0.7416 0.081*
C25 0.1519 (3) 0.7395 (3) 0.5887 (3) 0.0783 (8)
H25 0.0783 0.7621 0.5364 0.094*
C26 0.2365 (3) 0.6692 (3) 0.5435 (3) 0.0816 (9)
H26 0.2214 0.6442 0.4606 0.098*
C27 0.3439 (3) 0.6357 (3) 0.6208 (3) 0.0833 (9)
H27 0.4020 0.5878 0.5900 0.100*
C28 0.3671 (3) 0.6717 (3) 0.7434 (2) 0.0671 (7)
H28 0.4402 0.6471 0.7947 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0370 (9) 0.0696 (13) 0.0553 (11) 0.0099 (8) 0.0100 (8) 0.0120 (9)
N2 0.0402 (10) 0.0939 (16) 0.0826 (15) 0.0198 (10) 0.0210 (9) 0.0325 (12)
C1 0.136 (3) 0.0662 (19) 0.087 (2) −0.0047 (19) −0.008 (2) 0.0009 (16)
C2 0.0606 (15) 0.0661 (16) 0.0609 (16) 0.0095 (12) 0.0040 (12) 0.0082 (12)
C3 0.097 (2) 0.090 (2) 0.0601 (17) 0.0134 (18) −0.0004 (15) 0.0146 (15)
C4 0.113 (3) 0.091 (2) 0.085 (2) 0.006 (2) 0.0080 (19) 0.0392 (19)
C5 0.104 (2) 0.0664 (18) 0.102 (3) −0.0002 (17) 0.011 (2) 0.0254 (18)
C6 0.0624 (15) 0.0669 (17) 0.0694 (17) 0.0030 (12) 0.0100 (12) 0.0065 (13)
C7 0.0348 (10) 0.0583 (14) 0.0591 (14) 0.0068 (9) 0.0100 (9) 0.0097 (11)
C8 0.0341 (10) 0.0521 (12) 0.0541 (13) 0.0056 (9) 0.0086 (9) 0.0012 (10)
C9 0.0395 (11) 0.0524 (13) 0.0521 (13) 0.0010 (9) 0.0099 (9) 0.0036 (10)
C10 0.0629 (15) 0.0667 (15) 0.0732 (17) 0.0202 (12) 0.0252 (12) 0.0186 (13)
C11 0.084 (2) 0.0766 (19) 0.085 (2) 0.0262 (15) 0.0248 (16) 0.0298 (16)
C12 0.081 (2) 0.083 (2) 0.0711 (18) 0.0027 (16) 0.0123 (15) 0.0273 (15)
C13 0.081 (2) 0.129 (3) 0.0676 (18) 0.020 (2) 0.0328 (15) 0.0283 (18)
C14 0.0590 (16) 0.111 (2) 0.0723 (18) 0.0303 (16) 0.0254 (13) 0.0215 (16)
N3 0.0377 (10) 0.0634 (12) 0.0546 (11) 0.0068 (8) 0.0148 (8) 0.0084 (9)
N4 0.0381 (10) 0.1089 (17) 0.0584 (12) 0.0166 (11) 0.0105 (9) 0.0006 (12)
C15 0.102 (2) 0.0692 (19) 0.097 (2) −0.0074 (16) 0.0294 (18) 0.0172 (16)
C16 0.0501 (13) 0.0753 (17) 0.0631 (16) 0.0099 (12) 0.0184 (11) 0.0142 (13)
C17 0.0803 (19) 0.113 (3) 0.0645 (18) 0.0232 (18) 0.0261 (15) 0.0285 (18)
C18 0.091 (2) 0.119 (3) 0.0580 (17) 0.020 (2) 0.0182 (16) −0.0026 (19)
C19 0.083 (2) 0.092 (2) 0.074 (2) 0.0097 (17) 0.0135 (16) −0.0152 (17)
C20 0.0555 (14) 0.0655 (16) 0.0695 (17) 0.0087 (12) 0.0147 (12) 0.0029 (13)
C21 0.0333 (10) 0.0609 (14) 0.0554 (14) 0.0077 (9) 0.0138 (9) 0.0066 (11)
C22 0.0373 (11) 0.0519 (12) 0.0572 (14) 0.0038 (9) 0.0151 (9) 0.0086 (10)
C23 0.0422 (12) 0.0549 (13) 0.0571 (14) −0.0001 (10) 0.0140 (10) 0.0094 (10)
C24 0.0588 (15) 0.0825 (18) 0.0636 (16) 0.0168 (13) 0.0156 (12) 0.0177 (13)
C25 0.0736 (18) 0.097 (2) 0.0599 (17) 0.0079 (16) 0.0039 (14) 0.0204 (15)
C26 0.083 (2) 0.100 (2) 0.0561 (16) −0.0026 (17) 0.0186 (15) 0.0018 (15)
C27 0.0714 (18) 0.102 (2) 0.0710 (19) 0.0136 (16) 0.0196 (15) −0.0133 (16)
C28 0.0532 (14) 0.0801 (17) 0.0639 (16) 0.0121 (12) 0.0113 (12) −0.0014 (13)

Geometric parameters (Å, °)

N1—C8 1.295 (3) N3—C22 1.294 (3)
N1—C7 1.417 (3) N3—C21 1.421 (3)
N2—C8 1.338 (3) N4—C22 1.346 (3)
N2—H2A 0.8600 N4—H4A 0.8600
N2—H2B 0.8600 N4—H4B 0.8600
C1—C2 1.490 (4) C15—C16 1.493 (4)
C1—H1A 0.9600 C15—H15A 0.9600
C1—H1B 0.9600 C15—H15B 0.9600
C1—H1C 0.9600 C15—H15C 0.9600
C2—C3 1.391 (4) C16—C17 1.394 (4)
C2—C7 1.402 (3) C16—C21 1.405 (3)
C3—C4 1.332 (4) C17—C18 1.357 (5)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.386 (5) C18—C19 1.368 (5)
C4—H4 0.9300 C18—H18 0.9300
C5—C6 1.379 (4) C19—C20 1.375 (4)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.369 (3) C20—C21 1.374 (3)
C6—H6 0.9300 C20—H20 0.9300
C8—C9 1.489 (3) C22—C23 1.485 (3)
C9—C10 1.377 (3) C23—C28 1.384 (3)
C9—C14 1.381 (3) C23—C24 1.388 (3)
C10—C11 1.375 (4) C24—C25 1.383 (4)
C10—H10 0.9300 C24—H24 0.9300
C11—C12 1.359 (4) C25—C26 1.359 (4)
C11—H11 0.9300 C25—H25 0.9300
C12—C13 1.347 (4) C26—C27 1.364 (4)
C12—H12 0.9300 C26—H26 0.9300
C13—C14 1.391 (4) C27—C28 1.373 (4)
C13—H13 0.9300 C27—H27 0.9300
C14—H14 0.9300 C28—H28 0.9300
C8—N1—C7 118.20 (18) C22—N3—C21 116.93 (17)
C8—N2—H2A 120.0 C22—N4—H4A 120.0
C8—N2—H2B 120.0 C22—N4—H4B 120.0
H2A—N2—H2B 120.0 H4A—N4—H4B 120.0
C2—C1—H1A 109.5 C16—C15—H15A 109.5
C2—C1—H1B 109.5 C16—C15—H15B 109.5
H1A—C1—H1B 109.5 H15A—C15—H15B 109.5
C2—C1—H1C 109.5 C16—C15—H15C 109.5
H1A—C1—H1C 109.5 H15A—C15—H15C 109.5
H1B—C1—H1C 109.5 H15B—C15—H15C 109.5
C3—C2—C7 117.1 (3) C17—C16—C21 116.7 (3)
C3—C2—C1 121.9 (3) C17—C16—C15 122.3 (3)
C7—C2—C1 121.0 (3) C21—C16—C15 121.1 (2)
C4—C3—C2 123.0 (3) C18—C17—C16 122.9 (3)
C4—C3—H3 118.5 C18—C17—H17 118.5
C2—C3—H3 118.5 C16—C17—H17 118.5
C3—C4—C5 120.2 (3) C17—C18—C19 119.4 (3)
C3—C4—H4 119.9 C17—C18—H18 120.3
C5—C4—H4 119.9 C19—C18—H18 120.3
C6—C5—C4 118.3 (3) C18—C19—C20 119.8 (3)
C6—C5—H5 120.9 C18—C19—H19 120.1
C4—C5—H5 120.9 C20—C19—H19 120.1
C7—C6—C5 121.8 (3) C21—C20—C19 121.0 (3)
C7—C6—H6 119.1 C21—C20—H20 119.5
C5—C6—H6 119.1 C19—C20—H20 119.5
C6—C7—C2 119.5 (2) C20—C21—C16 120.1 (2)
C6—C7—N1 120.1 (2) C20—C21—N3 120.4 (2)
C2—C7—N1 120.2 (2) C16—C21—N3 119.4 (2)
N1—C8—N2 123.3 (2) N3—C22—N4 123.7 (2)
N1—C8—C9 118.86 (18) N3—C22—C23 119.19 (19)
N2—C8—C9 117.84 (19) N4—C22—C23 117.14 (19)
C10—C9—C14 117.2 (2) C28—C23—C24 117.7 (2)
C10—C9—C8 120.7 (2) C28—C23—C22 120.2 (2)
C14—C9—C8 122.1 (2) C24—C23—C22 122.1 (2)
C11—C10—C9 121.2 (3) C25—C24—C23 120.7 (3)
C11—C10—H10 119.4 C25—C24—H24 119.7
C9—C10—H10 119.4 C23—C24—H24 119.7
C12—C11—C10 120.8 (3) C26—C25—C24 120.5 (3)
C12—C11—H11 119.6 C26—C25—H25 119.8
C10—C11—H11 119.6 C24—C25—H25 119.8
C13—C12—C11 119.5 (3) C25—C26—C27 119.5 (3)
C13—C12—H12 120.3 C25—C26—H26 120.2
C11—C12—H12 120.3 C27—C26—H26 120.2
C12—C13—C14 120.5 (3) C26—C27—C28 120.8 (3)
C12—C13—H13 119.8 C26—C27—H27 119.6
C14—C13—H13 119.8 C28—C27—H27 119.6
C9—C14—C13 120.9 (3) C27—C28—C23 120.9 (3)
C9—C14—H14 119.6 C27—C28—H28 119.6
C13—C14—H14 119.6 C23—C28—H28 119.6
C7—C2—C3—C4 −1.5 (5) C21—C16—C17—C18 −0.1 (4)
C1—C2—C3—C4 179.6 (3) C15—C16—C17—C18 179.6 (3)
C2—C3—C4—C5 1.5 (6) C16—C17—C18—C19 −0.9 (5)
C3—C4—C5—C6 −0.6 (6) C17—C18—C19—C20 0.7 (5)
C4—C5—C6—C7 −0.2 (5) C18—C19—C20—C21 0.6 (4)
C5—C6—C7—C2 0.2 (4) C19—C20—C21—C16 −1.6 (3)
C5—C6—C7—N1 175.4 (3) C19—C20—C21—N3 −177.7 (2)
C3—C2—C7—C6 0.6 (4) C17—C16—C21—C20 1.4 (3)
C1—C2—C7—C6 179.5 (3) C15—C16—C21—C20 −178.3 (3)
C3—C2—C7—N1 −174.6 (2) C17—C16—C21—N3 177.5 (2)
C1—C2—C7—N1 4.3 (4) C15—C16—C21—N3 −2.2 (3)
C8—N1—C7—C6 95.6 (3) C22—N3—C21—C20 −98.8 (2)
C8—N1—C7—C2 −89.2 (3) C22—N3—C21—C16 85.1 (3)
C7—N1—C8—N2 0.4 (3) C21—N3—C22—N4 4.2 (3)
C7—N1—C8—C9 179.91 (19) C21—N3—C22—C23 −175.76 (19)
N1—C8—C9—C10 −18.2 (3) N3—C22—C23—C28 22.1 (3)
N2—C8—C9—C10 161.3 (2) N4—C22—C23—C28 −157.9 (2)
N1—C8—C9—C14 161.7 (2) N3—C22—C23—C24 −159.0 (2)
N2—C8—C9—C14 −18.8 (3) N4—C22—C23—C24 21.1 (3)
C14—C9—C10—C11 0.3 (4) C28—C23—C24—C25 −0.1 (4)
C8—C9—C10—C11 −179.8 (2) C22—C23—C24—C25 −179.1 (2)
C9—C10—C11—C12 0.6 (5) C23—C24—C25—C26 −0.4 (4)
C10—C11—C12—C13 −0.3 (5) C24—C25—C26—C27 0.4 (5)
C11—C12—C13—C14 −1.0 (5) C25—C26—C27—C28 0.2 (5)
C10—C9—C14—C13 −1.5 (4) C26—C27—C28—C23 −0.7 (5)
C8—C9—C14—C13 178.5 (3) C24—C23—C28—C27 0.7 (4)
C12—C13—C14—C9 1.9 (5) C22—C23—C28—C27 179.7 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2B···N3 0.86 2.25 3.049 (3) 156
N4—H4B···N1i 0.86 2.24 3.016 (3) 151

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2419).

References

  1. Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev.102, 3031–3065. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison Wisconsin, USA.
  6. Surma, K., Jaskólski, M., Kosturkiewicz, Z. & Oszczapowicz, J. (1988). Acta Cryst. C44, 1031–1033.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808017625/cv2419sup1.cif

e-64-o1276-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017625/cv2419Isup2.hkl

e-64-o1276-Isup2.hkl (203.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES