Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1255. doi: 10.1107/S1600536808017327

A second monoclinic polymorph of methyl 4-hydroxy­benzoate

Hoong-Kun Fun a,*, Samuel Robinson Jebas a,
PMCID: PMC2961691  PMID: 21202889

Abstract

A second monoclinic polymorph of methyl 4-hydroxy­benzoate, C8H8O3, is reported. The unit-cell dimensions are different from those of the previously reported monoclinic form [Vujovic & Nassimbeni (2006). Cryst. Growth Des. 6, 1595–1597]. The asymmetric unit contains three crystallographically independent mol­ecules, as observed in the previous form. The crystal structure is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, which link the mol­ecules into a three-dimensional network.

Related literature

For the other monoclinic polymorph of methyl 4-hydroxy­benzoate, see: Lin (1983); Vujovic & Nassimbeni (2006).graphic file with name e-64-o1255-scheme1.jpg

Experimental

Crystal data

  • C8H8O3

  • M r = 152.14

  • Monoclinic, Inline graphic

  • a = 12.9708 (4) Å

  • b = 17.2485 (7) Å

  • c = 10.8428 (3) Å

  • β = 119.260 (1)°

  • V = 2116.32 (12) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100.0 (1) K

  • 0.29 × 0.27 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.969, T max = 0.979

  • 25224 measured reflections

  • 3278 independent reflections

  • 2705 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.116

  • S = 1.05

  • 3278 reflections

  • 301 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017327/ci2607sup1.cif

e-64-o1255-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017327/ci2607Isup2.hkl

e-64-o1255-Isup2.hkl (157.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2Ai 0.82 1.96 2.770 (2) 168
O1B—H1B⋯O3Cii 0.82 1.93 2.729 (2) 167
O1C—H1C⋯O2B 0.82 1.92 2.729 (2) 167
C6A—H6A⋯O2C 0.93 2.58 3.343 (3) 140
C8C—H8C1⋯Cg1i 0.96 2.76 3.539 (3) 139
C8C—H8C3⋯Cg2 0.96 2.70 3.442 (3) 134
C8A—H8A1⋯Cg3iii 0.96 2.68 3.515 (3) 145
C8B—H8B3⋯Cg3iv 0.96 2.78 3.655 (4) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg1, Cg2 and Cg3 are the centroids of the C1A–C6A, C1B–C6B and C1C–C6C rings, respectively.

Acknowledgments

FHK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The crystal structure of the title compound at room temperature and at 113 K has been reported previously (Lin, 1983; Vujovic & Nassimbeni, 2006). We report here the structure of a second monoclinic polymorph of the title compound which was elucidated at 100.0 (1) K.

The compound crystallizes in the space group Cc with three independent molecules in the asymmetric unit, similar to the first monoclinic polymorph (Vujovic & Nassimbeni, 2006). However, the cell parameters of the present monoclinic polymorph differ significantly from the previous polymorph [a = 13.006 (3) Å, b = 17.261 (4) Å, c = 12.209 (2) Å and β = 129.12 (3)°]. The corresponding bond lengths and angles of the three independent molecules agree with each other and also with those in the other monoclinic polymorph (Vujovic & Nassimbeni, 2006). Each of the independent molecules are planar. The dihedral angles formed by the C1A-C6A plane with the C1B-C6B and C1C-C6C planes are 2.9 (1)° and 71.2 (1)°, respectively. In the first monoclinic polymorph (Vujovic & Nassimbeni, 2006) these angles are 2.9 (1) and 1.4 (1)°.

In the asymmetric unit, the independent molecules are linked via O—H···O and C—H···O hydrogen bonds. The crystal packing is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds and C—H···π interactions which link the molecules into a three-dimensional network (Fig.2).

Experimental

Methyl 4-hydroxybenzoate was purchased from Aldrich. Single crystals were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically [C-H = 0.93-0.96 Å and O-H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the absence of significant anomalous scattering, 3197 Friedel pairs were merged prior to the final refinement.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H8O3 F000 = 960
Mr = 152.14 Dx = 1.433 Mg m3
Monoclinic, Cc Mo Kα radiation λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 6163 reflections
a = 12.9708 (4) Å θ = 2.3–28.8º
b = 17.2485 (7) Å µ = 0.11 mm1
c = 10.8428 (3) Å T = 100.0 (1) K
β = 119.260 (1)º Block, purple
V = 2116.32 (12) Å3 0.29 × 0.27 × 0.19 mm
Z = 12

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3278 independent reflections
Radiation source: fine-focus sealed tube 2705 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.047
T = 100.0(1) K θmax = 30.6º
φ and ω scans θmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2005) h = −18→18
Tmin = 0.969, Tmax = 0.979 k = −24→24
25224 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.116   w = 1/[σ2(Fo2) + (0.0693P)2 + 0.2705P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3278 reflections Δρmax = 0.40 e Å3
301 parameters Δρmin = −0.24 e Å3
2 restraints Extinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.29177 (16) 0.36449 (10) 0.60077 (19) 0.0230 (4)
H1A 0.2494 0.3725 0.5160 0.034*
O2A 0.66456 (16) 0.08828 (9) 0.82151 (18) 0.0209 (4)
O3A 0.57101 (15) 0.06897 (9) 0.58740 (18) 0.0181 (3)
C1A 0.3604 (2) 0.30138 (13) 0.6194 (3) 0.0171 (5)
C2A 0.4381 (2) 0.27923 (15) 0.7586 (3) 0.0202 (5)
H2A 0.4414 0.3072 0.8337 0.024*
C3A 0.5102 (2) 0.21526 (14) 0.7836 (2) 0.0182 (5)
H3A 0.5621 0.2005 0.8762 0.022*
C4A 0.5061 (2) 0.17242 (14) 0.6716 (3) 0.0161 (5)
C5A 0.4260 (2) 0.19429 (13) 0.5327 (3) 0.0167 (5)
H5A 0.4209 0.1657 0.4572 0.020*
C6A 0.3542 (2) 0.25858 (14) 0.5077 (3) 0.0181 (5)
H6A 0.3014 0.2731 0.4152 0.022*
C7A 0.58804 (19) 0.10701 (13) 0.7037 (2) 0.0151 (5)
C8A 0.6476 (2) 0.00343 (13) 0.6093 (3) 0.0198 (5)
H8A1 0.7280 0.0209 0.6512 0.030*
H8A2 0.6256 −0.0209 0.5202 0.030*
H8A3 0.6401 −0.0332 0.6712 0.030*
O1B 1.02411 (15) 0.30607 (10) 0.65189 (19) 0.0217 (4)
H1B 1.0678 0.2996 0.7369 0.033*
O2B 0.65142 (15) 0.58228 (9) 0.42254 (18) 0.0213 (4)
O3B 0.74271 (14) 0.60350 (9) 0.65507 (17) 0.0192 (3)
C1B 0.95497 (19) 0.36928 (13) 0.6311 (2) 0.0170 (5)
C2B 0.8748 (2) 0.38876 (14) 0.4925 (2) 0.0174 (5)
H2B 0.8700 0.3591 0.4182 0.021*
C3B 0.8020 (2) 0.45249 (13) 0.4652 (2) 0.0168 (4)
H3B 0.7476 0.4650 0.3723 0.020*
C4B 0.8090 (2) 0.49832 (13) 0.5752 (2) 0.0149 (4)
C5B 0.89218 (19) 0.47907 (13) 0.7148 (2) 0.0166 (4)
H5B 0.8988 0.5096 0.7890 0.020*
C6B 0.9648 (2) 0.41474 (13) 0.7432 (3) 0.0166 (4)
H6B 1.0195 0.4020 0.8359 0.020*
C7B 0.72729 (19) 0.56418 (13) 0.5416 (2) 0.0161 (4)
C8B 0.6628 (3) 0.66766 (15) 0.6307 (3) 0.0198 (4)
H8B1 0.6704 0.7050 0.5699 0.030*
H8B2 0.6820 0.6916 0.7192 0.030*
H8B3 0.5830 0.6488 0.5866 0.030*
O1C 0.53025 (16) 0.53612 (10) 0.14682 (19) 0.0225 (4)
H1C 0.5731 0.5436 0.2317 0.034*
O2C 0.25159 (14) 0.24040 (9) 0.16008 (17) 0.0198 (3)
O3C 0.15783 (15) 0.25965 (9) −0.07388 (18) 0.0219 (4)
C1C 0.4608 (2) 0.47356 (13) 0.1275 (3) 0.0176 (5)
C2C 0.4694 (2) 0.42967 (13) 0.2407 (3) 0.0178 (5)
H2C 0.5232 0.4436 0.3332 0.021*
C3C 0.3977 (2) 0.36557 (14) 0.2147 (3) 0.0176 (5)
H3C 0.4035 0.3362 0.2898 0.021*
C4C 0.3163 (2) 0.34464 (13) 0.0758 (2) 0.0164 (5)
C5C 0.3096 (2) 0.38827 (14) −0.0364 (3) 0.0182 (5)
H5C 0.2566 0.3741 −0.1290 0.022*
C6C 0.3811 (2) 0.45228 (14) −0.0109 (3) 0.0194 (5)
H6C 0.3761 0.4812 −0.0861 0.023*
C7C 0.2344 (2) 0.27824 (13) 0.0442 (2) 0.0173 (5)
C8C 0.1753 (2) 0.17432 (14) 0.1380 (3) 0.0206 (5)
H8C1 0.0942 0.1907 0.0882 0.031*
H8C2 0.1926 0.1528 0.2278 0.031*
H8C3 0.1885 0.1357 0.0835 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0207 (9) 0.0252 (9) 0.0182 (10) 0.0078 (7) 0.0058 (8) 0.0009 (7)
O2A 0.0188 (9) 0.0202 (8) 0.0173 (9) 0.0021 (7) 0.0039 (7) 0.0009 (7)
O3A 0.0153 (8) 0.0200 (8) 0.0158 (8) 0.0043 (6) 0.0052 (7) −0.0001 (7)
C1A 0.0133 (11) 0.0180 (11) 0.0177 (12) 0.0011 (9) 0.0058 (10) 0.0022 (9)
C2A 0.0203 (13) 0.0217 (11) 0.0146 (12) 0.0002 (10) 0.0054 (10) −0.0029 (10)
C3A 0.0169 (12) 0.0206 (11) 0.0121 (11) −0.0006 (9) 0.0033 (10) 0.0001 (9)
C4A 0.0123 (11) 0.0175 (11) 0.0165 (12) −0.0020 (8) 0.0054 (9) 0.0009 (9)
C5A 0.0153 (12) 0.0176 (11) 0.0160 (12) −0.0012 (9) 0.0068 (10) −0.0019 (9)
C6A 0.0127 (11) 0.0226 (12) 0.0144 (12) 0.0001 (9) 0.0029 (10) 0.0007 (9)
C7A 0.0114 (11) 0.0176 (11) 0.0143 (12) −0.0025 (8) 0.0047 (10) −0.0002 (9)
C8A 0.0187 (12) 0.0170 (11) 0.0226 (13) 0.0026 (9) 0.0093 (10) −0.0004 (10)
O1B 0.0213 (9) 0.0215 (9) 0.0171 (8) 0.0063 (7) 0.0053 (7) 0.0000 (7)
O2B 0.0197 (8) 0.0221 (8) 0.0141 (8) 0.0019 (7) 0.0020 (7) 0.0001 (7)
O3B 0.0194 (8) 0.0201 (8) 0.0147 (8) 0.0044 (6) 0.0056 (7) 0.0007 (7)
C1B 0.0141 (10) 0.0188 (11) 0.0177 (12) −0.0030 (8) 0.0076 (9) −0.0010 (9)
C2B 0.0173 (11) 0.0212 (11) 0.0136 (11) −0.0008 (9) 0.0074 (9) −0.0030 (9)
C3B 0.0133 (10) 0.0212 (11) 0.0139 (10) −0.0015 (8) 0.0052 (9) 0.0003 (9)
C4B 0.0135 (10) 0.0143 (10) 0.0150 (11) −0.0005 (8) 0.0055 (9) 0.0000 (8)
C5B 0.0150 (11) 0.0195 (11) 0.0133 (11) 0.0003 (8) 0.0053 (9) −0.0003 (9)
C6B 0.0162 (11) 0.0190 (11) 0.0125 (10) −0.0001 (9) 0.0054 (9) 0.0010 (9)
C7B 0.0150 (10) 0.0167 (10) 0.0154 (11) −0.0017 (8) 0.0065 (9) 0.0001 (8)
C8B 0.0188 (10) 0.0197 (10) 0.0180 (10) 0.0059 (8) 0.0068 (8) 0.0016 (8)
O1C 0.0226 (9) 0.0218 (8) 0.0195 (9) −0.0068 (7) 0.0075 (7) −0.0003 (7)
O2C 0.0203 (8) 0.0195 (8) 0.0170 (8) −0.0045 (6) 0.0070 (7) 0.0012 (7)
O3C 0.0200 (8) 0.0206 (8) 0.0166 (8) −0.0012 (7) 0.0024 (7) −0.0006 (7)
C1C 0.0135 (11) 0.0167 (11) 0.0213 (13) 0.0002 (8) 0.0076 (10) 0.0019 (9)
C2C 0.0168 (11) 0.0197 (11) 0.0149 (11) 0.0004 (8) 0.0061 (10) −0.0015 (9)
C3C 0.0158 (11) 0.0211 (11) 0.0144 (12) 0.0001 (9) 0.0062 (9) 0.0011 (9)
C4C 0.0157 (11) 0.0148 (10) 0.0179 (12) 0.0010 (9) 0.0077 (9) 0.0010 (9)
C5C 0.0186 (11) 0.0199 (10) 0.0145 (11) 0.0013 (9) 0.0068 (9) 0.0001 (9)
C6C 0.0166 (12) 0.0213 (12) 0.0186 (12) 0.0009 (9) 0.0074 (10) 0.0046 (10)
C7C 0.0169 (11) 0.0155 (10) 0.0187 (12) 0.0026 (8) 0.0081 (10) 0.0008 (9)
C8C 0.0179 (13) 0.0199 (11) 0.0222 (13) −0.0019 (9) 0.0084 (11) 0.0009 (10)

Geometric parameters (Å, °)

O1A—C1A 1.357 (3) C3B—H3B 0.93
O1A—H1A 0.82 C4B—C5B 1.403 (3)
O2A—C7A 1.218 (3) C4B—C7B 1.472 (3)
O3A—C7A 1.340 (3) C5B—C6B 1.389 (3)
O3A—C8A 1.446 (3) C5B—H5B 0.93
C1A—C6A 1.387 (3) C6B—H6B 0.93
C1A—C2A 1.397 (4) C8B—H8B1 0.96
C2A—C3A 1.384 (3) C8B—H8B2 0.96
C2A—H2A 0.93 C8B—H8B3 0.96
C3A—C4A 1.400 (3) O1C—C1C 1.354 (3)
C3A—H3A 0.93 O1C—H1C 0.82
C4A—C5A 1.401 (4) O2C—C7C 1.334 (3)
C4A—C7A 1.471 (3) O2C—C8C 1.451 (3)
C5A—C6A 1.387 (3) O3C—C7C 1.219 (3)
C5A—H5A 0.93 C1C—C6C 1.393 (3)
C6A—H6A 0.93 C1C—C2C 1.399 (3)
C8A—H8A1 0.96 C2C—C3C 1.383 (3)
C8A—H8A2 0.96 C2C—H2C 0.93
C8A—H8A3 0.96 C3C—C4C 1.400 (3)
O1B—C1B 1.359 (3) C3C—H3C 0.93
O1B—H1B 0.82 C4C—C5C 1.398 (3)
O2B—C7B 1.221 (3) C4C—C7C 1.484 (3)
O3B—C7B 1.331 (3) C5C—C6C 1.380 (3)
O3B—C8B 1.449 (3) C5C—H5C 0.93
C1B—C2B 1.388 (3) C6C—H6C 0.93
C1B—C6B 1.399 (3) C8C—H8C1 0.96
C2B—C3B 1.384 (3) C8C—H8C2 0.96
C2B—H2B 0.93 C8C—H8C3 0.96
C3B—C4B 1.396 (3)
C1A—O1A—H1A 109.5 C6B—C5B—H5B 119.7
C7A—O3A—C8A 116.4 (2) C4B—C5B—H5B 119.7
O1A—C1A—C6A 122.9 (2) C5B—C6B—C1B 119.4 (2)
O1A—C1A—C2A 117.1 (2) C5B—C6B—H6B 120.3
C6A—C1A—C2A 120.1 (2) C1B—C6B—H6B 120.3
C3A—C2A—C1A 119.4 (2) O2B—C7B—O3B 121.7 (2)
C3A—C2A—H2A 120.3 O2B—C7B—C4B 124.7 (2)
C1A—C2A—H2A 120.3 O3B—C7B—C4B 113.54 (19)
C2A—C3A—C4A 121.0 (2) O3B—C8B—H8B1 109.5
C2A—C3A—H3A 119.5 O3B—C8B—H8B2 109.5
C4A—C3A—H3A 119.5 H8B1—C8B—H8B2 109.5
C3A—C4A—C5A 119.0 (2) O3B—C8B—H8B3 109.5
C3A—C4A—C7A 118.9 (2) H8B1—C8B—H8B3 109.5
C5A—C4A—C7A 122.1 (2) H8B2—C8B—H8B3 109.5
C6A—C5A—C4A 120.0 (2) C1C—O1C—H1C 109.5
C6A—C5A—H5A 120.0 C7C—O2C—C8C 116.3 (2)
C4A—C5A—H5A 120.0 O1C—C1C—C6C 117.6 (2)
C5A—C6A—C1A 120.5 (2) O1C—C1C—C2C 122.3 (2)
C5A—C6A—H6A 119.7 C6C—C1C—C2C 120.1 (2)
C1A—C6A—H6A 119.7 C3C—C2C—C1C 119.8 (2)
O2A—C7A—O3A 122.2 (2) C3C—C2C—H2C 120.1
O2A—C7A—C4A 125.2 (2) C1C—C2C—H2C 120.1
O3A—C7A—C4A 112.7 (2) C2C—C3C—C4C 120.3 (2)
O3A—C8A—H8A1 109.5 C2C—C3C—H3C 119.8
O3A—C8A—H8A2 109.5 C4C—C3C—H3C 119.8
H8A1—C8A—H8A2 109.5 C5C—C4C—C3C 119.4 (2)
O3A—C8A—H8A3 109.5 C5C—C4C—C7C 118.8 (2)
H8A1—C8A—H8A3 109.5 C3C—C4C—C7C 121.8 (2)
H8A2—C8A—H8A3 109.5 C6C—C5C—C4C 120.4 (2)
C1B—O1B—H1B 109.5 C6C—C5C—H5C 119.8
C7B—O3B—C8B 116.7 (2) C4C—C5C—H5C 119.8
O1B—C1B—C2B 117.3 (2) C5C—C6C—C1C 119.9 (2)
O1B—C1B—C6B 122.2 (2) C5C—C6C—H6C 120.0
C2B—C1B—C6B 120.5 (2) C1C—C6C—H6C 120.0
C3B—C2B—C1B 119.7 (2) O3C—C7C—O2C 122.4 (2)
C3B—C2B—H2B 120.1 O3C—C7C—C4C 124.7 (2)
C1B—C2B—H2B 120.1 O2C—C7C—C4C 112.8 (2)
C2B—C3B—C4B 121.0 (2) O2C—C8C—H8C1 109.5
C2B—C3B—H3B 119.5 O2C—C8C—H8C2 109.5
C4B—C3B—H3B 119.5 H8C1—C8C—H8C2 109.5
C3B—C4B—C5B 118.8 (2) O2C—C8C—H8C3 109.5
C3B—C4B—C7B 119.1 (2) H8C1—C8C—H8C3 109.5
C5B—C4B—C7B 122.05 (19) H8C2—C8C—H8C3 109.5
C6B—C5B—C4B 120.6 (2)
O1A—C1A—C2A—C3A 180.0 (2) O1B—C1B—C6B—C5B 179.4 (2)
C6A—C1A—C2A—C3A 1.2 (4) C2B—C1B—C6B—C5B 1.0 (3)
C1A—C2A—C3A—C4A −0.1 (4) C8B—O3B—C7B—O2B 1.6 (3)
C2A—C3A—C4A—C5A −1.2 (4) C8B—O3B—C7B—C4B −178.0 (2)
C2A—C3A—C4A—C7A 177.3 (2) C3B—C4B—C7B—O2B 0.5 (3)
C3A—C4A—C5A—C6A 1.5 (3) C5B—C4B—C7B—O2B −178.1 (2)
C7A—C4A—C5A—C6A −177.0 (2) C3B—C4B—C7B—O3B −179.9 (2)
C4A—C5A—C6A—C1A −0.4 (3) C5B—C4B—C7B—O3B 1.5 (3)
O1A—C1A—C6A—C5A −179.7 (2) O1C—C1C—C2C—C3C −178.9 (2)
C2A—C1A—C6A—C5A −1.0 (3) C6C—C1C—C2C—C3C −0.7 (3)
C8A—O3A—C7A—O2A 0.8 (3) C1C—C2C—C3C—C4C −0.3 (3)
C8A—O3A—C7A—C4A −179.72 (19) C2C—C3C—C4C—C5C 1.1 (3)
C3A—C4A—C7A—O2A −3.4 (4) C2C—C3C—C4C—C7C −177.4 (2)
C5A—C4A—C7A—O2A 175.1 (2) C3C—C4C—C5C—C6C −1.1 (3)
C3A—C4A—C7A—O3A 177.1 (2) C7C—C4C—C5C—C6C 177.5 (2)
C5A—C4A—C7A—O3A −4.3 (3) C4C—C5C—C6C—C1C 0.2 (3)
O1B—C1B—C2B—C3B 179.9 (2) O1C—C1C—C6C—C5C 179.0 (2)
C6B—C1B—C2B—C3B −1.6 (3) C2C—C1C—C6C—C5C 0.7 (3)
C1B—C2B—C3B—C4B 0.8 (4) C8C—O2C—C7C—O3C 1.2 (3)
C2B—C3B—C4B—C5B 0.5 (3) C8C—O2C—C7C—C4C −179.69 (18)
C2B—C3B—C4B—C7B −178.1 (2) C5C—C4C—C7C—O3C −2.4 (3)
C3B—C4B—C5B—C6B −1.2 (3) C3C—C4C—C7C—O3C 176.2 (2)
C7B—C4B—C5B—C6B 177.5 (2) C5C—C4C—C7C—O2C 178.6 (2)
C4B—C5B—C6B—C1B 0.4 (3) C3C—C4C—C7C—O2C −2.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···O2Ai 0.82 1.96 2.770 (2) 168
O1B—H1B···O3Cii 0.82 1.93 2.729 (2) 167
O1C—H1C···O2B 0.82 1.92 2.729 (2) 167
C6A—H6A···O2C 0.93 2.58 3.343 (3) 140
C8C—H8C1···Cg1i 0.96 2.76 3.539 (3) 139
C8C—H8C3···Cg2 0.96 2.70 3.442 (3) 134
C8A—H8A1···Cg3iii 0.96 2.68 3.515 (3) 145
C8B—H8B3···Cg3iv 0.96 2.78 3.655 (4) 151

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) x+1, y, z+1; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2607).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lin, X. T. (1983). Chin. J. Struct. Chem.2, 213.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  5. Vujovic, D. & Nassimbeni, L. R. (2006). Cryst. Growth Des.6, 1595–1597.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808017327/ci2607sup1.cif

e-64-o1255-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808017327/ci2607Isup2.hkl

e-64-o1255-Isup2.hkl (157.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES