Abstract
The title compound, [CuCl(C9H9N5)]n, prepared by solvothermal synthesis, is a new homometallic CuI–olefin coordination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetrazol-5-yl)pyridine ligands and are each bonded to one terminal Cl atom. The organic ligand acts as a bidentate ligand bridging two neighboring Cu centers through the bonds to the N atom of the pyridine ring and the double bond of the allyl group. Weak Cu⋯Cl [3.136 (8) Å), C—H⋯Cl and C—H⋯N interactions connect the coordination polymers into a three-dimensional structure.
Related literature
For the solvothermal synthesis and for related structures, see: Ye et al. (2005 ▶,2007 ▶); Wang (2008 ▶).
Experimental
Crystal data
[CuCl(C9H9N5)]
M r = 286.21
Triclinic,
a = 7.3005 (15) Å
b = 7.6560 (15) Å
c = 9.981 (2) Å
α = 80.51 (3)°
β = 77.00 (3)°
γ = 84.68 (3)°
V = 535.23 (19) Å3
Z = 2
Mo Kα radiation
μ = 2.27 mm−1
T = 293 (2) K
0.2 × 0.15 × 0.1 mm
Data collection
Rigaku Mercury2 diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.806, T max = 1.000 (expected range = 0.643–0.797)
5572 measured reflections
2443 independent reflections
1918 reflections with I > 2σ(I)
R int = 0.047
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.103
S = 1.16
2443 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.43 e Å−3
Δρmin = −0.46 e Å−3
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: PLATON (Spek, 2003 ▶) and SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013895/gk2142sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013895/gk2142Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected geometric parameters (Å, °).
| Cu1—N1 | 1.995 (3) |
| Cu1—C9i | 2.026 (3) |
| Cu1—C8i | 2.044 (3) |
| Cu1—Cl3 | 2.2408 (10) |
| N1—Cu1—C9i | 105.86 (13) |
| N1—Cu1—C8i | 143.90 (13) |
| C9i—Cu1—C8i | 39.16 (14) |
| N1—Cu1—Cl3 | 108.44 (9) |
| C9i—Cu1—Cl3 | 145.70 (11) |
| C8i—Cu1—Cl3 | 106.88 (10) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C1—H1A⋯Cl3ii | 0.96 | 2.79 | 3.675 (4) | 154 |
| C2—H2A⋯N4ii | 0.96 | 2.59 | 3.379 (5) | 139 |
| C4—H4A⋯N4 | 0.96 | 2.57 | 2.909 (4) | 101 |
| C6—H6A⋯Cl3iii | 0.96 | 2.83 | 3.607 (4) | 139 |
Symmetry codes: (ii)
; (iii)
.
Acknowledgments
This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.
supplementary crystallographic information
Comment
Under hydrothermal or solvothermal conditions some interesting reactions occur. Often new compounds can be obtained that cannot be synthesized using conventional solution techniques. In sealed tube, unstable copper(I) salt can exist under vacuum, and thus interesting copper(I) coordination compounds can be obtained (Ye et al., 2005, 2007). The title compound, as colorless block crystals suitable for X-ray analysis, was obtained through solvothermal treatment of CuCl and 3-(2-allyl-2H-tetrazol -5-yl)pyridine in methanol at 75°C. Isostructural product was obtained when CuBr was used for the reaction (Wang, 2008).
The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands bind to the copper(I) centers through the N atom of pyridine and double bond of the allyl group (C8—C9 1.364 (5) Å). The copper atom is coordinated to two olefinic organic ligands and one terminal Cl atom in a trigonal environment (Fig 1, Table 1). The organic ligands link the neighboring Cu centers to form a homometallic Cu(I) coordination polymer developing along the c axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to Cu(I)(Fig. 1).
Finally, weak Cu—Cl (3.136 Å), C–H···Cl and C–H···N interactions between the coordination polymers lead to the formation of the three-dimensional structure (Fig. 2).
Experimental
A mixture of 3-(2-allyl-2H-tetrazol-5-yl)pyridine(20 mg, 0.2 mmol), CuCl (17.9 mg, 0.2 mmol) were placed in a thick Pyrex tube (ca 20 cm in length). After addition of methanol, the tube was frozen with liquid nitrogen, evacuated under vaccum, sealed with a torch and kept at 348 K. Colorless block-shaped crystals suitable for X-ray analysis were obtained after 5 d (yield 61% based on the organic ligand).
Refinement
All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) and Uiso(H) = 1.5Ueq(Cmethyl).
Figures
Fig. 1.
A view of the title compound with displacement ellipsoids shown at the 30% probability level [symmetry codes: A: x, y - 1, z + 1; B: x, y + 1, z - 1; C: x, y + 2, z - 2.
Fig. 2.
Crystal packing of the title compound viewed along the b axis. Weak interactions are shown as dashed lines.
Crystal data
| [CuCl(C9H9N5)] | Z = 2 |
| Mr = 286.21 | F(000) = 288 |
| Triclinic, P1 | Dx = 1.776 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.3005 (15) Å | Cell parameters from 5070 reflections |
| b = 7.6560 (15) Å | θ = 3.2–27.5° |
| c = 9.981 (2) Å | µ = 2.27 mm−1 |
| α = 80.51 (3)° | T = 293 K |
| β = 77.00 (3)° | Block, colorless |
| γ = 84.68 (3)° | 0.2 × 0.15 × 0.1 mm |
| V = 535.23 (19) Å3 |
Data collection
| Rigaku Mercury2 diffractometer | 2443 independent reflections |
| Radiation source: fine-focus sealed tube | 1918 reflections with I > 2σ(I) |
| graphite | Rint = 0.047 |
| Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
| CCD_Profile_fitting scans | h = −9→9 |
| Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −9→9 |
| Tmin = 0.806, Tmax = 1 | l = −12→12 |
| 5572 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.104 | H-atom parameters constrained |
| S = 1.16 | w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3 |
| 2443 reflections | (Δ/σ)max < 0.001 |
| 154 parameters | Δρmax = 0.43 e Å−3 |
| 0 restraints | Δρmin = −0.46 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.15988 (6) | −0.16243 (6) | 0.38989 (4) | 0.03499 (17) | |
| Cl3 | −0.15148 (11) | −0.11291 (11) | 0.40805 (10) | 0.0362 (2) | |
| N1 | 0.2905 (4) | 0.0083 (4) | 0.2319 (3) | 0.0273 (6) | |
| N2 | 0.0888 (4) | 0.4924 (4) | −0.2268 (3) | 0.0288 (6) | |
| N3 | 0.2403 (4) | 0.4402 (4) | −0.1738 (3) | 0.0307 (7) | |
| N4 | −0.0077 (4) | 0.2863 (4) | −0.0651 (3) | 0.0365 (7) | |
| N5 | −0.0620 (4) | 0.4030 (4) | −0.1640 (3) | 0.0363 (7) | |
| C1 | 0.4677 (5) | 0.0501 (5) | 0.2253 (3) | 0.0345 (8) | |
| H1A | 0.5306 | −0.0055 | 0.2974 | 0.039 (10)* | |
| C2 | 0.5620 (5) | 0.1711 (5) | 0.1194 (4) | 0.0375 (9) | |
| H2A | 0.6894 | 0.1957 | 0.1169 | 0.034 (10)* | |
| C3 | 0.4697 (5) | 0.2565 (5) | 0.0182 (4) | 0.0344 (8) | |
| H3A | 0.5327 | 0.3399 | −0.0568 | 0.040 (10)* | |
| C4 | 0.2031 (5) | 0.0904 (4) | 0.1323 (3) | 0.0266 (7) | |
| H4A | 0.0779 | 0.0591 | 0.1349 | 0.029 (9)* | |
| C5 | 0.2858 (4) | 0.2174 (4) | 0.0256 (3) | 0.0256 (7) | |
| C6 | 0.0802 (5) | 0.6439 (4) | −0.3365 (3) | 0.0307 (8) | |
| H6A | 0.1222 | 0.7458 | −0.3100 | 0.030 (10)* | |
| H6B | −0.0483 | 0.6696 | −0.3450 | 0.037 (10)* | |
| C7 | 0.1745 (5) | 0.3120 (4) | −0.0734 (3) | 0.0266 (7) | |
| C8 | 0.1990 (5) | 0.6128 (4) | −0.4751 (3) | 0.0303 (8) | |
| H8A | 0.1838 | 0.5028 | −0.5045 | 0.028 (9)* | |
| C9 | 0.3666 (5) | 0.6878 (5) | −0.5325 (4) | 0.0414 (10) | |
| H9A | 0.4217 | 0.7393 | −0.4705 | 0.075 (16)* | |
| H9B | 0.4567 | 0.6248 | −0.5960 | 0.066 (14)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0274 (3) | 0.0380 (3) | 0.0312 (3) | −0.00009 (18) | −0.00526 (18) | 0.01645 (19) |
| Cl3 | 0.0272 (5) | 0.0346 (5) | 0.0449 (5) | −0.0015 (3) | −0.0117 (4) | 0.0051 (4) |
| N1 | 0.0277 (15) | 0.0261 (14) | 0.0234 (13) | −0.0003 (11) | −0.0041 (12) | 0.0069 (11) |
| N2 | 0.0307 (15) | 0.0278 (15) | 0.0243 (14) | −0.0005 (12) | −0.0062 (12) | 0.0058 (12) |
| N3 | 0.0346 (16) | 0.0295 (15) | 0.0253 (14) | −0.0053 (12) | −0.0076 (13) | 0.0070 (12) |
| N4 | 0.0345 (17) | 0.0377 (17) | 0.0304 (16) | −0.0084 (13) | −0.0051 (13) | 0.0160 (14) |
| N5 | 0.0321 (17) | 0.0388 (18) | 0.0335 (16) | −0.0084 (13) | −0.0049 (13) | 0.0086 (14) |
| C1 | 0.0304 (19) | 0.045 (2) | 0.0252 (17) | −0.0044 (16) | −0.0086 (15) | 0.0090 (16) |
| C2 | 0.0280 (19) | 0.042 (2) | 0.043 (2) | −0.0100 (16) | −0.0110 (16) | 0.0004 (18) |
| C3 | 0.037 (2) | 0.033 (2) | 0.0295 (18) | −0.0104 (16) | −0.0036 (16) | 0.0069 (16) |
| C4 | 0.0246 (17) | 0.0270 (17) | 0.0235 (16) | −0.0051 (13) | −0.0012 (13) | 0.0061 (13) |
| C5 | 0.0284 (17) | 0.0243 (16) | 0.0221 (15) | −0.0020 (13) | −0.0028 (14) | −0.0010 (13) |
| C6 | 0.037 (2) | 0.0258 (18) | 0.0246 (17) | 0.0003 (15) | −0.0068 (15) | 0.0069 (14) |
| C7 | 0.0304 (18) | 0.0234 (17) | 0.0223 (16) | −0.0028 (14) | −0.0014 (14) | 0.0024 (13) |
| C8 | 0.036 (2) | 0.0221 (17) | 0.0275 (17) | 0.0038 (14) | −0.0066 (15) | 0.0073 (14) |
| C9 | 0.0293 (19) | 0.041 (2) | 0.046 (2) | 0.0094 (16) | −0.0110 (18) | 0.0140 (18) |
Geometric parameters (Å, °)
| Cu1—N1 | 1.995 (3) | C2—H2A | 0.9600 |
| Cu1—C9i | 2.026 (3) | C3—C5 | 1.386 (5) |
| Cu1—C8i | 2.044 (3) | C3—H3A | 0.9600 |
| Cu1—Cl3 | 2.2408 (10) | C4—C5 | 1.387 (4) |
| N1—C4 | 1.340 (4) | C4—H4A | 0.9601 |
| N1—C1 | 1.345 (4) | C5—C7 | 1.476 (4) |
| N2—N5 | 1.327 (4) | C6—C8 | 1.501 (5) |
| N2—N3 | 1.332 (4) | C6—H6A | 0.9600 |
| N2—C6 | 1.465 (4) | C6—H6B | 0.9600 |
| N3—C7 | 1.321 (4) | C8—C9 | 1.364 (5) |
| N4—N5 | 1.323 (4) | C8—Cu1ii | 2.044 (3) |
| N4—C7 | 1.344 (4) | C8—H8A | 0.9600 |
| C1—C2 | 1.384 (5) | C9—Cu1ii | 2.026 (3) |
| C1—H1A | 0.9599 | C9—H9A | 0.9600 |
| C2—C3 | 1.382 (5) | C9—H9B | 0.9600 |
| N1—Cu1—C9i | 105.86 (13) | C5—C4—H4A | 118.6 |
| N1—Cu1—C8i | 143.90 (13) | C3—C5—C4 | 118.7 (3) |
| C9i—Cu1—C8i | 39.16 (14) | C3—C5—C7 | 121.7 (3) |
| N1—Cu1—Cl3 | 108.44 (9) | C4—C5—C7 | 119.6 (3) |
| C9i—Cu1—Cl3 | 145.70 (11) | N2—C6—C8 | 113.1 (3) |
| C8i—Cu1—Cl3 | 106.88 (10) | N2—C6—H6A | 108.9 |
| C4—N1—C1 | 117.8 (3) | C8—C6—H6A | 108.7 |
| C4—N1—Cu1 | 121.4 (2) | N2—C6—H6B | 109.0 |
| C1—N1—Cu1 | 120.7 (2) | C8—C6—H6B | 109.1 |
| N5—N2—N3 | 113.9 (3) | H6A—C6—H6B | 107.9 |
| N5—N2—C6 | 121.6 (3) | N3—C7—N4 | 112.9 (3) |
| N3—N2—C6 | 124.2 (3) | N3—C7—C5 | 123.1 (3) |
| C7—N3—N2 | 101.4 (3) | N4—C7—C5 | 123.8 (3) |
| N5—N4—C7 | 106.3 (3) | C9—C8—C6 | 123.7 (4) |
| N4—N5—N2 | 105.5 (3) | C9—C8—Cu1ii | 69.73 (19) |
| N1—C1—C2 | 122.6 (3) | C6—C8—Cu1ii | 105.9 (2) |
| N1—C1—H1A | 118.6 | C9—C8—H8A | 115.7 |
| C2—C1—H1A | 118.8 | C6—C8—H8A | 115.7 |
| C3—C2—C1 | 119.0 (3) | Cu1ii—C8—H8A | 116.0 |
| C3—C2—H2A | 120.6 | C8—C9—Cu1ii | 71.11 (19) |
| C1—C2—H2A | 120.4 | C8—C9—H9A | 115.8 |
| C2—C3—C5 | 118.8 (3) | Cu1ii—C9—H9A | 116.3 |
| C2—C3—H3A | 120.5 | C8—C9—H9B | 117.2 |
| C5—C3—H3A | 120.7 | Cu1ii—C9—H9B | 116.7 |
| N1—C4—C5 | 123.0 (3) | H9A—C9—H9B | 113.5 |
| N1—C4—H4A | 118.4 |
Symmetry codes: (i) x, y−1, z+1; (ii) x, y+1, z−1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C1—H1A···Cl3iii | 0.96 | 2.79 | 3.675 (4) | 154. |
| C2—H2A···N4iii | 0.96 | 2.59 | 3.379 (5) | 139. |
| C4—H4A···N4 | 0.96 | 2.57 | 2.909 (4) | 101. |
| C6—H6A···Cl3iv | 0.96 | 2.83 | 3.607 (4) | 139. |
Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2142).
References
- Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
- Wang, W. (2008). Acta Cryst. E64, m759. [DOI] [PMC free article] [PubMed]
- Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev.34, 208–225. [DOI] [PubMed]
- Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed.46, 6852–6856. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013895/gk2142sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013895/gk2142Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


