Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 7;64(Pt 7):m900–m901. doi: 10.1107/S1600536808013895

catena-Poly[[chloridocopper(I)]-μ-η21-3-(2-allyl-2H-tetra­zol-5-yl)pyridine]

Wei Wang a,*
PMCID: PMC2961697  PMID: 21202765

Abstract

The title compound, [CuCl(C9H9N5)]n, prepared by solvo­thermal synthesis, is a new homometallic CuI–olefin coordination polymer in which the CuI atoms are linked by the 3-(2-allyl-2H-tetra­zol-5-yl)pyridine ligands and are each bonded to one terminal Cl atom. The organic ligand acts as a bidentate ligand bridging two neighboring Cu centers through the bonds to the N atom of the pyridine ring and the double bond of the allyl group. Weak Cu⋯Cl [3.136 (8) Å), C—H⋯Cl and C—H⋯N inter­actions connect the coordination polymers into a three-dimensional structure.

Related literature

For the solvothermal synthesis and for related structures, see: Ye et al. (2005,2007); Wang (2008).graphic file with name e-64-0m900-scheme1.jpg

Experimental

Crystal data

  • [CuCl(C9H9N5)]

  • M r = 286.21

  • Triclinic, Inline graphic

  • a = 7.3005 (15) Å

  • b = 7.6560 (15) Å

  • c = 9.981 (2) Å

  • α = 80.51 (3)°

  • β = 77.00 (3)°

  • γ = 84.68 (3)°

  • V = 535.23 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.806, T max = 1.000 (expected range = 0.643–0.797)

  • 5572 measured reflections

  • 2443 independent reflections

  • 1918 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.103

  • S = 1.16

  • 2443 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013895/gk2142sup1.cif

e-64-0m900-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013895/gk2142Isup2.hkl

e-64-0m900-Isup2.hkl (120KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—N1 1.995 (3)
Cu1—C9i 2.026 (3)
Cu1—C8i 2.044 (3)
Cu1—Cl3 2.2408 (10)
N1—Cu1—C9i 105.86 (13)
N1—Cu1—C8i 143.90 (13)
C9i—Cu1—C8i 39.16 (14)
N1—Cu1—Cl3 108.44 (9)
C9i—Cu1—Cl3 145.70 (11)
C8i—Cu1—Cl3 106.88 (10)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl3ii 0.96 2.79 3.675 (4) 154
C2—H2A⋯N4ii 0.96 2.59 3.379 (5) 139
C4—H4A⋯N4 0.96 2.57 2.909 (4) 101
C6—H6A⋯Cl3iii 0.96 2.83 3.607 (4) 139

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

Under hydrothermal or solvothermal conditions some interesting reactions occur. Often new compounds can be obtained that cannot be synthesized using conventional solution techniques. In sealed tube, unstable copper(I) salt can exist under vacuum, and thus interesting copper(I) coordination compounds can be obtained (Ye et al., 2005, 2007). The title compound, as colorless block crystals suitable for X-ray analysis, was obtained through solvothermal treatment of CuCl and 3-(2-allyl-2H-tetrazol -5-yl)pyridine in methanol at 75°C. Isostructural product was obtained when CuBr was used for the reaction (Wang, 2008).

The 3-(2-allyl-2H-tetrazol-5-yl) pyridine ligands bind to the copper(I) centers through the N atom of pyridine and double bond of the allyl group (C8—C9 1.364 (5) Å). The copper atom is coordinated to two olefinic organic ligands and one terminal Cl atom in a trigonal environment (Fig 1, Table 1). The organic ligands link the neighboring Cu centers to form a homometallic Cu(I) coordination polymer developing along the c axis. Unfortunately, the N atoms of the tetrazole ring fail to coordinate to Cu(I)(Fig. 1).

Finally, weak Cu—Cl (3.136 Å), C–H···Cl and C–H···N interactions between the coordination polymers lead to the formation of the three-dimensional structure (Fig. 2).

Experimental

A mixture of 3-(2-allyl-2H-tetrazol-5-yl)pyridine(20 mg, 0.2 mmol), CuCl (17.9 mg, 0.2 mmol) were placed in a thick Pyrex tube (ca 20 cm in length). After addition of methanol, the tube was frozen with liquid nitrogen, evacuated under vaccum, sealed with a torch and kept at 348 K. Colorless block-shaped crystals suitable for X-ray analysis were obtained after 5 d (yield 61% based on the organic ligand).

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96Å (methyl) with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

A view of the title compound with displacement ellipsoids shown at the 30% probability level [symmetry codes: A: x, y - 1, z + 1; B: x, y + 1, z - 1; C: x, y + 2, z - 2.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed along the b axis. Weak interactions are shown as dashed lines.

Crystal data

[CuCl(C9H9N5)] Z = 2
Mr = 286.21 F(000) = 288
Triclinic, P1 Dx = 1.776 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3005 (15) Å Cell parameters from 5070 reflections
b = 7.6560 (15) Å θ = 3.2–27.5°
c = 9.981 (2) Å µ = 2.27 mm1
α = 80.51 (3)° T = 293 K
β = 77.00 (3)° Block, colorless
γ = 84.68 (3)° 0.2 × 0.15 × 0.1 mm
V = 535.23 (19) Å3

Data collection

Rigaku Mercury2 diffractometer 2443 independent reflections
Radiation source: fine-focus sealed tube 1918 reflections with I > 2σ(I)
graphite Rint = 0.047
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scans h = −9→9
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −9→9
Tmin = 0.806, Tmax = 1 l = −12→12
5572 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.0388P)2] where P = (Fo2 + 2Fc2)/3
2443 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.15988 (6) −0.16243 (6) 0.38989 (4) 0.03499 (17)
Cl3 −0.15148 (11) −0.11291 (11) 0.40805 (10) 0.0362 (2)
N1 0.2905 (4) 0.0083 (4) 0.2319 (3) 0.0273 (6)
N2 0.0888 (4) 0.4924 (4) −0.2268 (3) 0.0288 (6)
N3 0.2403 (4) 0.4402 (4) −0.1738 (3) 0.0307 (7)
N4 −0.0077 (4) 0.2863 (4) −0.0651 (3) 0.0365 (7)
N5 −0.0620 (4) 0.4030 (4) −0.1640 (3) 0.0363 (7)
C1 0.4677 (5) 0.0501 (5) 0.2253 (3) 0.0345 (8)
H1A 0.5306 −0.0055 0.2974 0.039 (10)*
C2 0.5620 (5) 0.1711 (5) 0.1194 (4) 0.0375 (9)
H2A 0.6894 0.1957 0.1169 0.034 (10)*
C3 0.4697 (5) 0.2565 (5) 0.0182 (4) 0.0344 (8)
H3A 0.5327 0.3399 −0.0568 0.040 (10)*
C4 0.2031 (5) 0.0904 (4) 0.1323 (3) 0.0266 (7)
H4A 0.0779 0.0591 0.1349 0.029 (9)*
C5 0.2858 (4) 0.2174 (4) 0.0256 (3) 0.0256 (7)
C6 0.0802 (5) 0.6439 (4) −0.3365 (3) 0.0307 (8)
H6A 0.1222 0.7458 −0.3100 0.030 (10)*
H6B −0.0483 0.6696 −0.3450 0.037 (10)*
C7 0.1745 (5) 0.3120 (4) −0.0734 (3) 0.0266 (7)
C8 0.1990 (5) 0.6128 (4) −0.4751 (3) 0.0303 (8)
H8A 0.1838 0.5028 −0.5045 0.028 (9)*
C9 0.3666 (5) 0.6878 (5) −0.5325 (4) 0.0414 (10)
H9A 0.4217 0.7393 −0.4705 0.075 (16)*
H9B 0.4567 0.6248 −0.5960 0.066 (14)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0274 (3) 0.0380 (3) 0.0312 (3) −0.00009 (18) −0.00526 (18) 0.01645 (19)
Cl3 0.0272 (5) 0.0346 (5) 0.0449 (5) −0.0015 (3) −0.0117 (4) 0.0051 (4)
N1 0.0277 (15) 0.0261 (14) 0.0234 (13) −0.0003 (11) −0.0041 (12) 0.0069 (11)
N2 0.0307 (15) 0.0278 (15) 0.0243 (14) −0.0005 (12) −0.0062 (12) 0.0058 (12)
N3 0.0346 (16) 0.0295 (15) 0.0253 (14) −0.0053 (12) −0.0076 (13) 0.0070 (12)
N4 0.0345 (17) 0.0377 (17) 0.0304 (16) −0.0084 (13) −0.0051 (13) 0.0160 (14)
N5 0.0321 (17) 0.0388 (18) 0.0335 (16) −0.0084 (13) −0.0049 (13) 0.0086 (14)
C1 0.0304 (19) 0.045 (2) 0.0252 (17) −0.0044 (16) −0.0086 (15) 0.0090 (16)
C2 0.0280 (19) 0.042 (2) 0.043 (2) −0.0100 (16) −0.0110 (16) 0.0004 (18)
C3 0.037 (2) 0.033 (2) 0.0295 (18) −0.0104 (16) −0.0036 (16) 0.0069 (16)
C4 0.0246 (17) 0.0270 (17) 0.0235 (16) −0.0051 (13) −0.0012 (13) 0.0061 (13)
C5 0.0284 (17) 0.0243 (16) 0.0221 (15) −0.0020 (13) −0.0028 (14) −0.0010 (13)
C6 0.037 (2) 0.0258 (18) 0.0246 (17) 0.0003 (15) −0.0068 (15) 0.0069 (14)
C7 0.0304 (18) 0.0234 (17) 0.0223 (16) −0.0028 (14) −0.0014 (14) 0.0024 (13)
C8 0.036 (2) 0.0221 (17) 0.0275 (17) 0.0038 (14) −0.0066 (15) 0.0073 (14)
C9 0.0293 (19) 0.041 (2) 0.046 (2) 0.0094 (16) −0.0110 (18) 0.0140 (18)

Geometric parameters (Å, °)

Cu1—N1 1.995 (3) C2—H2A 0.9600
Cu1—C9i 2.026 (3) C3—C5 1.386 (5)
Cu1—C8i 2.044 (3) C3—H3A 0.9600
Cu1—Cl3 2.2408 (10) C4—C5 1.387 (4)
N1—C4 1.340 (4) C4—H4A 0.9601
N1—C1 1.345 (4) C5—C7 1.476 (4)
N2—N5 1.327 (4) C6—C8 1.501 (5)
N2—N3 1.332 (4) C6—H6A 0.9600
N2—C6 1.465 (4) C6—H6B 0.9600
N3—C7 1.321 (4) C8—C9 1.364 (5)
N4—N5 1.323 (4) C8—Cu1ii 2.044 (3)
N4—C7 1.344 (4) C8—H8A 0.9600
C1—C2 1.384 (5) C9—Cu1ii 2.026 (3)
C1—H1A 0.9599 C9—H9A 0.9600
C2—C3 1.382 (5) C9—H9B 0.9600
N1—Cu1—C9i 105.86 (13) C5—C4—H4A 118.6
N1—Cu1—C8i 143.90 (13) C3—C5—C4 118.7 (3)
C9i—Cu1—C8i 39.16 (14) C3—C5—C7 121.7 (3)
N1—Cu1—Cl3 108.44 (9) C4—C5—C7 119.6 (3)
C9i—Cu1—Cl3 145.70 (11) N2—C6—C8 113.1 (3)
C8i—Cu1—Cl3 106.88 (10) N2—C6—H6A 108.9
C4—N1—C1 117.8 (3) C8—C6—H6A 108.7
C4—N1—Cu1 121.4 (2) N2—C6—H6B 109.0
C1—N1—Cu1 120.7 (2) C8—C6—H6B 109.1
N5—N2—N3 113.9 (3) H6A—C6—H6B 107.9
N5—N2—C6 121.6 (3) N3—C7—N4 112.9 (3)
N3—N2—C6 124.2 (3) N3—C7—C5 123.1 (3)
C7—N3—N2 101.4 (3) N4—C7—C5 123.8 (3)
N5—N4—C7 106.3 (3) C9—C8—C6 123.7 (4)
N4—N5—N2 105.5 (3) C9—C8—Cu1ii 69.73 (19)
N1—C1—C2 122.6 (3) C6—C8—Cu1ii 105.9 (2)
N1—C1—H1A 118.6 C9—C8—H8A 115.7
C2—C1—H1A 118.8 C6—C8—H8A 115.7
C3—C2—C1 119.0 (3) Cu1ii—C8—H8A 116.0
C3—C2—H2A 120.6 C8—C9—Cu1ii 71.11 (19)
C1—C2—H2A 120.4 C8—C9—H9A 115.8
C2—C3—C5 118.8 (3) Cu1ii—C9—H9A 116.3
C2—C3—H3A 120.5 C8—C9—H9B 117.2
C5—C3—H3A 120.7 Cu1ii—C9—H9B 116.7
N1—C4—C5 123.0 (3) H9A—C9—H9B 113.5
N1—C4—H4A 118.4

Symmetry codes: (i) x, y−1, z+1; (ii) x, y+1, z−1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Cl3iii 0.96 2.79 3.675 (4) 154.
C2—H2A···N4iii 0.96 2.59 3.379 (5) 139.
C4—H4A···N4 0.96 2.57 2.909 (4) 101.
C6—H6A···Cl3iv 0.96 2.83 3.607 (4) 139.

Symmetry codes: (iii) x+1, y, z; (iv) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2142).

References

  1. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  2. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  3. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  4. Wang, W. (2008). Acta Cryst. E64, m759. [DOI] [PMC free article] [PubMed]
  5. Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev.34, 208–225. [DOI] [PubMed]
  6. Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed.46, 6852–6856. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808013895/gk2142sup1.cif

e-64-0m900-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808013895/gk2142Isup2.hkl

e-64-0m900-Isup2.hkl (120KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES