Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Jun 13;64(Pt 7):o1249. doi: 10.1107/S1600536808016231

(1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-Decachloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

Nicole Riddell a, Robert McCrindle b, Gilles Arsenault a, Alan J Lough c,*
PMCID: PMC2961698  PMID: 21202883

Abstract

The title compound, C18H14Cl10, is a decachlorinated commercial flame retardant. The structure determination confirms the relative stereochemistry. The central eight-membered ring is in a chair-type conformation. In the crystal structure, there are no significant inter­molecular inter­actions and mol­ecules are separated by normal van der Waals distances.

Related literature

For related literature, see: Garcia et al. (1991); Hoh et al. (2006); Qiu et al. (2007); Sverko et al. (2008); Tomy et al. (2007).graphic file with name e-64-o1249-scheme1.jpg

Experimental

Crystal data

  • C18H14Cl10

  • M r = 584.79

  • Orthorhombic, Inline graphic

  • a = 11.4341 (2) Å

  • b = 12.9704 (3) Å

  • c = 15.0389 (4) Å

  • V = 2230.34 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 150 (1) K

  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995) T min = 0.720, T max = 0.804

  • 17031 measured reflections

  • 5087 independent reflections

  • 4585 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.072

  • S = 1.04

  • 5087 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983), 2207 Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZOSMN (Otwinowski & Minor, 1997); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016231/bt2716sup1.cif

e-64-o1249-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016231/bt2716Isup2.hkl

e-64-o1249-Isup2.hkl (249.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge NSERC Canada and the University of Toronto for funding.

supplementary crystallographic information

Comment

Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. The two major components found in the commercial material are known as syn-DP (1R,2R,5S,6S,9R,10R,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] and anti-DP (1R,2R,5R,6R,9S,10S,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] (see (1) and (2) respectively, Fig. 1). X-ray structure determinations have already been completed on both compounds (Garcia et al., 1991). There is growing evidence that this flame retardant is becoming a significant environmental contaminant (Hoh et al., 2006; Qiu et al., 2007; Tomy et al., 2007). 3–5 Dechlorinated DP species have also been detected in the environment (Sverko et al., 2008) although very little is known about their identity. It is important to identify these compounds if analytical chemists wish to quantify the total presence of DP, including its dechlorinated homologues, in the environment.

We have synthesized the dechlorinated compound (1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-decachloropentacyclo[ 12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene (compound (3); see Fig. 1). GC/MS and 1H NMR spectroscopy have confirmed the basic structure of (3) as having the DP-like structure with only 10 chlorine atoms. X-ray structure determination of (3) was required to positively confirm the relative stereochemistry.

Experimental

The synthesis of compound (3) was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal X-ray crystallography, colourless crystals were grown from a solution of (3) in toluene.

Refinement

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Schematic representation of compounds (1), (2) and (3).

Fig. 2.

Fig. 2.

The molecular structure of the title compound. Displacement ellipsoids are at the 30% probability level. H atoms are not shown.

Crystal data

C18H14Cl10 F000 = 1168
Mr = 584.79 Dx = 1.742 Mg m3
Orthorhombic, P212121 Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 17031 reflections
a = 11.4341 (2) Å θ = 2.7–27.5º
b = 12.9704 (3) Å µ = 1.26 mm1
c = 15.0389 (4) Å T = 150 (1) K
V = 2230.34 (9) Å3 Block, colourless
Z = 4 0.24 × 0.20 × 0.18 mm

Data collection

Bruker–Nonius KappaCCD diffractometer 5087 independent reflections
Radiation source: fine-focus sealed tube 4585 reflections with I > 2σ(I)
Monochromator: graphite Rint = 0.036
Detector resolution: 9 pixels mm-1 θmax = 27.5º
T = 150(2) K θmin = 2.7º
φ scans and ω scans with κ offsets h = −14→14
Absorption correction: multi-scan(SORTAV; Blessing, 1995) k = −16→16
Tmin = 0.720, Tmax = 0.804 l = −19→19
17031 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.032   w = 1/[σ2(Fo2) + (0.03P)2 + 1.117P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072 (Δ/σ)max = 0.001
S = 1.04 Δρmax = 0.34 e Å3
5087 reflections Δρmin = −0.32 e Å3
253 parameters Extinction correction: none
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 2207 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.01 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.87131 (5) 0.78434 (5) 0.55246 (4) 0.02288 (14)
Cl2 1.07256 (5) 0.66212 (5) 0.43725 (5) 0.02523 (14)
Cl3 1.14507 (6) 0.81013 (6) 0.25760 (5) 0.03027 (16)
Cl4 0.97237 (6) 1.01756 (5) 0.25571 (5) 0.03129 (16)
Cl5 1.03310 (6) 0.98603 (5) 0.47707 (4) 0.02853 (16)
Cl6 0.78892 (6) 1.00833 (5) 0.44082 (5) 0.03032 (16)
Cl7 0.68597 (7) 0.61445 (6) −0.03570 (5) 0.03760 (18)
Cl8 0.45590 (8) 0.74067 (6) 0.04705 (6) 0.0468 (2)
Cl9 0.36780 (6) 0.61715 (7) 0.23695 (6) 0.0441 (2)
Cl10 0.53873 (7) 0.41158 (6) 0.26610 (5) 0.0406 (2)
C1 0.7915 (2) 0.78678 (19) 0.37527 (16) 0.0184 (5)
H1A 0.7177 0.8161 0.4004 0.022*
C2 0.8244 (2) 0.8505 (2) 0.28950 (17) 0.0195 (5)
H2A 0.7614 0.9026 0.2790 0.023*
C3 0.8459 (2) 0.7930 (2) 0.20247 (17) 0.0205 (5)
H3A 0.8959 0.7325 0.2154 0.025*
H3B 0.8907 0.8389 0.1624 0.025*
C4 0.7364 (2) 0.75489 (19) 0.15180 (17) 0.0197 (5)
H4A 0.6656 0.7817 0.1818 0.024*
H4B 0.7378 0.7832 0.0907 0.024*
C5 0.7288 (2) 0.63674 (19) 0.14688 (17) 0.0190 (5)
H5A 0.8081 0.6103 0.1306 0.023*
C6 0.6879 (2) 0.57719 (19) 0.23264 (17) 0.0192 (5)
H6A 0.7506 0.5264 0.2479 0.023*
C7 0.6627 (2) 0.6394 (2) 0.31572 (17) 0.0220 (6)
H7A 0.6127 0.5982 0.3560 0.026*
H7B 0.6188 0.7023 0.2991 0.026*
C8 0.7757 (2) 0.6710 (2) 0.36566 (17) 0.0205 (5)
H8A 0.7746 0.6396 0.4257 0.025*
H8B 0.8440 0.6425 0.3335 0.025*
C9 0.8936 (2) 0.81438 (18) 0.43944 (18) 0.0186 (5)
C10 1.0060 (2) 0.77145 (19) 0.40053 (17) 0.0194 (5)
C11 1.0325 (2) 0.8277 (2) 0.32990 (17) 0.0213 (5)
C12 0.9372 (2) 0.9089 (2) 0.32037 (17) 0.0212 (5)
C13 0.9127 (2) 0.93046 (19) 0.42002 (18) 0.0213 (6)
C14 0.6406 (2) 0.5965 (2) 0.07546 (17) 0.0239 (6)
C15 0.5203 (2) 0.6380 (2) 0.09832 (19) 0.0258 (6)
C16 0.4856 (2) 0.5901 (2) 0.17161 (19) 0.0257 (6)
C17 0.5815 (2) 0.5147 (2) 0.19615 (19) 0.0237 (6)
C18 0.6255 (3) 0.4837 (2) 0.10393 (18) 0.0252 (6)
H18A 0.5664 0.4462 0.0683 0.030*
H18B 0.7000 0.4449 0.1056 0.030*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0260 (3) 0.0273 (3) 0.0153 (3) −0.0008 (3) 0.0011 (3) 0.0010 (3)
Cl2 0.0230 (3) 0.0248 (3) 0.0278 (4) 0.0037 (3) −0.0027 (3) 0.0018 (3)
Cl3 0.0259 (3) 0.0390 (4) 0.0259 (4) −0.0050 (3) 0.0075 (3) −0.0007 (3)
Cl4 0.0420 (4) 0.0240 (3) 0.0279 (4) −0.0119 (3) −0.0062 (3) 0.0095 (3)
Cl5 0.0351 (4) 0.0252 (3) 0.0253 (3) −0.0091 (3) −0.0081 (3) −0.0011 (3)
Cl6 0.0369 (4) 0.0227 (3) 0.0313 (4) 0.0081 (3) −0.0059 (3) −0.0054 (3)
Cl7 0.0549 (5) 0.0391 (4) 0.0189 (3) −0.0113 (4) 0.0010 (3) −0.0043 (3)
Cl8 0.0578 (5) 0.0361 (4) 0.0465 (5) 0.0171 (4) −0.0290 (4) −0.0059 (4)
Cl9 0.0230 (3) 0.0645 (5) 0.0447 (5) −0.0044 (4) 0.0035 (3) −0.0276 (4)
Cl10 0.0526 (5) 0.0323 (4) 0.0367 (4) −0.0228 (4) −0.0016 (4) 0.0057 (3)
C1 0.0190 (12) 0.0201 (12) 0.0160 (13) −0.0019 (10) −0.0024 (10) 0.0008 (10)
C2 0.0224 (12) 0.0174 (12) 0.0188 (13) 0.0012 (10) −0.0026 (10) 0.0015 (10)
C3 0.0218 (12) 0.0225 (13) 0.0172 (13) −0.0028 (11) −0.0007 (10) 0.0013 (11)
C4 0.0257 (13) 0.0186 (13) 0.0150 (13) −0.0049 (10) −0.0029 (10) 0.0019 (10)
C5 0.0192 (12) 0.0185 (12) 0.0193 (13) 0.0009 (10) −0.0015 (10) −0.0029 (10)
C6 0.0196 (11) 0.0190 (12) 0.0190 (13) −0.0015 (10) −0.0026 (10) 0.0016 (10)
C7 0.0190 (12) 0.0259 (14) 0.0210 (13) −0.0058 (11) −0.0003 (10) 0.0021 (11)
C8 0.0223 (13) 0.0207 (13) 0.0186 (13) −0.0022 (11) −0.0013 (11) 0.0016 (11)
C9 0.0220 (12) 0.0174 (12) 0.0163 (12) 0.0005 (9) −0.0007 (10) 0.0028 (10)
C10 0.0191 (12) 0.0195 (12) 0.0197 (13) −0.0007 (10) −0.0037 (10) −0.0010 (10)
C11 0.0195 (12) 0.0233 (13) 0.0210 (14) −0.0045 (11) 0.0010 (11) −0.0051 (11)
C12 0.0276 (14) 0.0182 (12) 0.0179 (13) −0.0045 (11) −0.0028 (11) 0.0036 (10)
C13 0.0235 (12) 0.0185 (13) 0.0220 (15) −0.0008 (11) −0.0020 (10) −0.0028 (10)
C14 0.0306 (14) 0.0222 (13) 0.0190 (14) 0.0001 (12) −0.0026 (11) −0.0034 (11)
C15 0.0246 (13) 0.0214 (13) 0.0315 (16) 0.0026 (11) −0.0145 (12) −0.0078 (11)
C16 0.0179 (12) 0.0310 (15) 0.0282 (16) −0.0047 (12) −0.0035 (11) −0.0109 (12)
C17 0.0262 (13) 0.0181 (12) 0.0267 (15) −0.0055 (11) 0.0001 (11) −0.0004 (11)
C18 0.0299 (14) 0.0196 (13) 0.0261 (14) −0.0021 (12) −0.0017 (12) −0.0036 (11)

Geometric parameters (Å, °)

Cl1—C9 1.762 (3) C5—C14 1.563 (4)
Cl2—C10 1.701 (3) C5—C6 1.574 (3)
Cl3—C11 1.700 (3) C5—H5A 1.0000
Cl4—C12 1.758 (3) C6—C7 1.515 (4)
Cl5—C13 1.775 (3) C6—C17 1.562 (3)
Cl6—C13 1.766 (3) C6—H6A 1.0000
Cl7—C14 1.766 (3) C7—C8 1.550 (3)
Cl8—C15 1.706 (3) C7—H7A 0.9900
Cl9—C16 1.704 (3) C7—H7B 0.9900
Cl10—C17 1.771 (3) C8—H8A 0.9900
C1—C8 1.519 (3) C8—H8B 0.9900
C1—C9 1.557 (3) C9—C10 1.518 (3)
C1—C2 1.577 (3) C9—C13 1.549 (3)
C1—H1A 1.0000 C10—C11 1.324 (4)
C2—C3 1.526 (4) C11—C12 1.522 (4)
C2—C12 1.567 (4) C12—C13 1.550 (4)
C2—H2A 1.0000 C14—C15 1.517 (4)
C3—C4 1.547 (3) C14—C18 1.534 (4)
C3—H3A 0.9900 C15—C16 1.326 (4)
C3—H3B 0.9900 C16—C17 1.514 (4)
C4—C5 1.537 (3) C17—C18 1.529 (4)
C4—H4A 0.9900 C18—H18A 0.9900
C4—H4B 0.9900 C18—H18B 0.9900
C8—C1—C9 112.1 (2) C10—C9—C13 99.5 (2)
C8—C1—C2 117.9 (2) C10—C9—C1 108.2 (2)
C9—C1—C2 102.00 (19) C13—C9—C1 102.2 (2)
C8—C1—H1A 108.1 C10—C9—Cl1 114.42 (17)
C9—C1—H1A 108.1 C13—C9—Cl1 114.65 (18)
C2—C1—H1A 108.1 C1—C9—Cl1 116.00 (18)
C3—C2—C12 110.9 (2) C11—C10—C9 107.5 (2)
C3—C2—C1 118.9 (2) C11—C10—Cl2 128.1 (2)
C12—C2—C1 101.96 (19) C9—C10—Cl2 124.01 (19)
C3—C2—H2A 108.2 C10—C11—C12 107.0 (2)
C12—C2—H2A 108.2 C10—C11—Cl3 127.8 (2)
C1—C2—H2A 108.2 C12—C11—Cl3 125.06 (19)
C2—C3—C4 116.6 (2) C11—C12—C13 99.4 (2)
C2—C3—H3A 108.1 C11—C12—C2 106.4 (2)
C4—C3—H3A 108.1 C13—C12—C2 103.0 (2)
C2—C3—H3B 108.1 C11—C12—Cl4 116.30 (19)
C4—C3—H3B 108.1 C13—C12—Cl4 115.59 (18)
H3A—C3—H3B 107.3 C2—C12—Cl4 114.32 (18)
C5—C4—C3 112.9 (2) C9—C13—C12 91.88 (19)
C5—C4—H4A 109.0 C9—C13—Cl6 114.20 (18)
C3—C4—H4A 109.0 C12—C13—Cl6 114.79 (18)
C5—C4—H4B 109.0 C9—C13—Cl5 114.36 (18)
C3—C4—H4B 109.0 C12—C13—Cl5 113.56 (18)
H4A—C4—H4B 107.8 Cl6—C13—Cl5 107.68 (13)
C4—C5—C14 113.8 (2) C15—C14—C18 100.0 (2)
C4—C5—C6 117.8 (2) C15—C14—C5 108.1 (2)
C14—C5—C6 101.98 (19) C18—C14—C5 101.5 (2)
C4—C5—H5A 107.6 C15—C14—Cl7 115.73 (19)
C14—C5—H5A 107.6 C18—C14—Cl7 115.04 (18)
C6—C5—H5A 107.6 C5—C14—Cl7 114.65 (19)
C7—C6—C17 114.7 (2) C16—C15—C14 107.1 (2)
C7—C6—C5 118.1 (2) C16—C15—Cl8 127.8 (2)
C17—C6—C5 101.4 (2) C14—C15—Cl8 124.5 (2)
C7—C6—H6A 107.3 C15—C16—C17 106.8 (2)
C17—C6—H6A 107.3 C15—C16—Cl9 128.3 (2)
C5—C6—H6A 107.3 C17—C16—Cl9 124.4 (2)
C6—C7—C8 112.5 (2) C16—C17—C18 100.8 (2)
C6—C7—H7A 109.1 C16—C17—C6 108.4 (2)
C8—C7—H7A 109.1 C18—C17—C6 101.5 (2)
C6—C7—H7B 109.1 C16—C17—Cl10 115.6 (2)
C8—C7—H7B 109.1 C18—C17—Cl10 115.51 (19)
H7A—C7—H7B 107.8 C6—C17—Cl10 113.47 (19)
C1—C8—C7 114.0 (2) C17—C18—C14 92.2 (2)
C1—C8—H8A 108.8 C17—C18—H18A 113.2
C7—C8—H8A 108.8 C14—C18—H18A 113.2
C1—C8—H8B 108.8 C17—C18—H18B 113.2
C7—C8—H8B 108.8 C14—C18—H18B 113.2
H8A—C8—H8B 107.6 H18A—C18—H18B 110.6

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2716).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Tetrahedron Lett.32, 3289–3292.
  5. Hoh, E., Zhu, L. & Hites, R. A. (2006). Environ. Sci. Technol.40, 1184–1189. [DOI] [PubMed]
  6. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Qiu, X., Marvin, C. H. & Hites, R. A. (2007). Environ. Sci. Technol.41, 2249–2254. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Sverko, E., Tomy, G. T., Marvin, C. H., Zaruk, D., Reiner, E., Helm, P. A., Hill, B. & McCarry, B. E. (2008). Environ. Sci. Technol.42, 361–366. [DOI] [PubMed]
  12. Tomy, G. T., Pleskach, K., Ismail, N., Whittle, M., Helm, P. A., Sverko, E., Zaruk, D. & Marvin, C. H. (2007). Environ. Sci. Technol.41, 2249–2254. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808016231/bt2716sup1.cif

e-64-o1249-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808016231/bt2716Isup2.hkl

e-64-o1249-Isup2.hkl (249.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES